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1 Strongly convex functions

Today we will talk about another property of convex functions that can significantly speed-up the
convergence of first-order methods: strong convexity. We say that f : Rn → R is α–strongly convex
if it satisfies

(1)

f(x)− f(y) ≤ ∇f(x)>(x− y)− α

2
‖x− y‖2.

Of course this definition does not require differentiability of the function f , and one can replace
∇f(x) in the inequality above by g ∈ ∂f(x). It is immediate to verify that a function f is α-strongly
convex if and only if x 7→ f(x)− α

2 ‖x‖
2 is convex.

Note that (1) can be interpreted as follows: at any point x one can find a (convex) quadratic
lower bound q−x (y) = f(x)+∇f(x)>(y−x)+ α

2 ‖x−y‖
2 to the function f , i.e. q−x (y) ≤ f(y),∀y ∈ Rn

(and q−x (x) = f(x)). Thus in some sense strong convexity is a dual assumption to the smoothness
assumption from previous lectures. Indeed recall that smoothness can be defined via the inequality:

f(x)− f(y) ≤ ∇f(y)>(x− y) +
β

2
‖x− y‖2,

which implies that at any point y one can find a (convex) quadratic upper bound q+y (x) =

f(y)+∇f(y)>(x−y)+ β
2 ‖x−y‖

2 to the function f , i.e. q+y (x) ≥ f(x),∀x ∈ Rn (and q+y (y) = f(y)).
In fact we will see later a precise sense in which smoothness and strong convexity are dual notions
(via Fenchel duality). Remark also that clearly one always hasβ ≥ α.

2 Projected Subgradient Descent for strongly convex and Lips-
chitz functions

In this section we investigate the setting where f is strongly convex but potentially non-smooth.
As we have already seen in a previous lecture, in the case of non-smooth functions we have to
project back on the set where we control the norm of the gradients. Precisely let us assume that
X is a compact and convex set such that ∀x ∈ X ,∀g ∈ ∂f(x), ‖g‖ ≤ L. We consider the Projected
Subgradient Descent algorithm with time-varying step size, that is

yt+1 = xt − ηtgt, where gt ∈ ∂f(xt)

xt+1 = argminx∈X ‖x− yt+1‖.

The following result is extracted from a recent paper of Simon Lacoste-Julien, Mark Schmidt,
and Francis Bach.
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Theorem 1. Let ηs = 2
α(s+1) , then Projected Subgradient Descent satisfies for

x̄t ∈
{

argmin1≤s≤tf(xs);
∑t

s=1
2s

t(t−1)xs

}
,

f(x̄t)−min
x∈X

f(x) ≤ 2L2

α(t+ 1)
.

Note that one can immediately see from the analysis in this lecture that the rate is optimal.
Indeed, one can always find a function f and set X (an `2 ball) that satisfies the above assumptions

and such that no black-box procedure can go at a rate faster than L2

8αt for t ≤ n (in fact the constant
1/8 can be improved to 1/2).

Proof. Let x∗ ∈ argminx∈X f(x). Coming back to our original analysis of Projected Subgradient
Descent and using the strong convexity assumption one immediately obtains

f(xs)− f(x∗) ≤ ηs
2
L2 +

(
1

2ηs
− α

2

)
‖xs − x∗‖2 −

1

2ηs
‖xs+1 − x∗‖2.

Multiplying this inequality by s yields

s(f(xs)− f(x∗)) ≤ L2

α
+
α

4

(
s(s− 1)‖xs − x∗‖2 − s(s+ 1)‖xs+1 − x∗‖2

)
.

Now sum the resulting inequality over s = 1 to s = t, and apply Jensen’s inequality to obtain
the claimed statement.

3 Gradient Descent for strongly convex and smooth functions

As will see now, having both strong convexity and smoothness allows for a drastic improvement in
the convergence rate. The key observation is the following lemma.

Lemma 1. Let f be β-smooth and α-strongly convex. Then for all x, y ∈ Rn, one has

(∇f(x)−∇f(y))>(x− y) ≥ αβ

β + α
‖x− y‖2 +

1

β + α
‖∇f(x)−∇f(y)‖2.

Proof. Using the definitions it is easy to prove that φ(x) = f(x) − α
2 ‖x‖

2is convex and (β − α)-
smooth, and thus using a result from the previous lecture one has

(∇φ(x)−∇φ(y))>(x− y) ≥ 1

β − α
‖∇φ(x)−∇φ(y)‖2,

which gives the claimed result with straightforward computations. (Note that if α = β then
one just has to apply directly the above inequality to f .)

Theorem 2. Let f be β-smooth and α-strongly convex, and let Q = β
α be the condition number of

f . Then Gradient Descent with η = 2
α+β satisfies

f(xt)− f(x∗) ≤ β

2

(
Q− 1

Q+ 1

)2(t−1)
‖x1 − x∗‖2.
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Proof. First note that by β-smoothness one has

f(xt)− f(x∗) ≤ β

2
‖xt − x∗‖2.

Now using the previous lemma one obtains

‖xt − x∗‖2 = ‖xt−1 − η∇f(xt−1)− x∗‖2

= ‖xt−1 − x∗‖2 − 2η∇f(xt−1)
>(xt−1 − x∗) + η2‖∇f(xt−1)‖2

≤
(

1− 2
ηαβ

β + α

)
‖xt−1 − x∗‖2 +

(
η2 − 2

η

β + α

)
‖∇f(xt−1)‖2

=

(
Q− 1

Q+ 1

)2

‖xt−1 − x∗‖2,

which concludes the proof.
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