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1 Strongly convex functions

Today we will talk about another property of convex functions that can significantly speed-up the
convergence of first-order methods: strong convexity. We say that f : R™ — R is a—strongly convex
if it satisfies
(1)
f@) = f(y) < V@) (@ —y) = Flle =yl

Of course this definition does not require differentiability of the function f, and one can replace
V f(z) in the inequality above by g € df(x). It is immediate to verify that a function f is a-strongly
convex if and only if z — f(z) — $||z|* is convex.

Note that (1) can be interpreted as follows: at any point x one can find a (convex) quadratic
lower bound g; (y) = f(z)+Vf(z)" (y—z)+%|z—y|* to the function f, i.e. q; (y) < f(y),Vy € R"
(and g (z) = f(z)). Thus in some sense strong convexity is a dual assumption to the smoothness
assumption from previous lectures. Indeed recall that smoothness can be defined via the inequality:

F@) = ) < V) — ) + 5 e — ol

which implies that at any point y one can find a (convex) quadratic upper bound ¢ (z) =

FW)+V I (@—y)+ 51z —yl? to the function [, ie. g (z) > f(z), Ve € R™ (and g (y) = f(y)).
In fact we will see later a precise sense in which smoothness and strong convexity are dual notions
(via Fenchel duality). Remark also that clearly one always hasf > a.

2 Projected Subgradient Descent for strongly convex and Lips-
chitz functions

In this section we investigate the setting where f is strongly convex but potentially non-smooth.
As we have already seen in a previous lecture, in the case of non-smooth functions we have to
project back on the set where we control the norm of the gradients. Precisely let us assume that
X is a compact and convex set such that Vo € X,Vg € 0f(z),||g|| < L. We consider the Projected
Subgradient Descent algorithm with time-varying step size, that is

Yi+1 = Ty — i G, where g; € Of ()

Tyy1 = argminge y ||z — yeia |-

The following result is extracted from a recent paper of Simon Lacoste-Julien, Mark Schmidt,
and Francis Bach.



Theorem 1. Let n; = then Projected Subgradient Descent satisfies for
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a(s+1)’
Tt € {argminlgsgtf(%)? 22:1 t(%l)xs},
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Note that one can immediately see from the analysis in this lecture that the rate is optimal.
Indeed, one can always find a function f and set X’ (an ¢2 ball) that satisfies the above assumptions

and such that no black-box procedure can go at a rate faster than SLTZ, for t <n (in fact the constant
1/8 can be improved to 1/2).

Proof. Let z* € argmin,cy f(z). Coming back to our original analysis of Projected Subgradient
Descent and using the strong convexity assumption one immediately obtains

* Ms r2 1 « * 12 1 * 12

Multiplying this inequality by s yields

2 (6%
(@) = ) < T+ § (566 = Dl =21 = st + Dl = ')

Now sum the resulting inequality over s = 1 to s = ¢, and apply Jensen’s inequality to obtain
the claimed statement. O

3 Gradient Descent for strongly convex and smooth functions

As will see now, having both strong convexity and smoothness allows for a drastic improvement in
the convergence rate. The key observation is the following lemma.

Lemma 1. Let f be 3-smooth and «-strongly convex. Then for all x,y € R™, one has
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(Vf(@) = V) (@ —y) lz =yl +
Proof. Using the definitions it is easy to prove that ¢(z) = f(z) — §||z|/*is convex and (8 — «)-

smooth, and thus using a result from the previous lecture one has

1
(Vo(@) = Vo) (@ =) 2 3= [Vé(z) = Vo),
which gives the claimed result with straightforward computations. (Note that if « = £ then
one just has to apply directly the above inequality to f.) O

Theorem 2. Let f be B-smooth and a-strongly convex, and let Q = g be the condition number of

f. Then Gradient Descent with n = O%Bsatisﬁes
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Proof. First note that by S-smoothness one has

Flan) — F@*) < Dl — P,

Now using the previous lemma one obtains

lze-1 = 0V f(ze-1) — 27|
ey — 2|2 = 20V f(@e-1) " (w1 — &) + 1|V f (2e-1) ||
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which concludes the proof.
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