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What’s the Mechanism Behind 
Google? 
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How google return 
such kind of rankings 
(e.g. cuhk homepage 
first then Wikipedia 
page)? One important 
factor is PageRank 
score.  



How to make PageRank 
computation scalable  

• There are billions of web pages and hyperlinks 
between them, how to compute their ranking 
score  (e.g., PageRank) efficiently? 3 
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• Topic-Specific PageRank 
• Trust-Rank 
• Further Reading  
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Web as a Graph 

•  Web as a directed graph:  
– Nodes: Web pages  
– Edges: Hyperlinks  
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Web as a Directed Graph 
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Broad Question 

• How to organize the Web? 
• First try: Human curated Web directories 

– Yahoo, DMOZ, LookSmart 

• Second try: Web Search 
– Information Retrieval investigates: Find relevant 

docs in a small and trusted set 
• Newspaper articles, Patents, etc. 

– But: Web is huge, full of untrusted documents, 
random things, web spam, etc. 
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Web Search: 2 Challenges 

• Web contains many sources of information: 
Who to “trust”? 
– Trick: Trustworthy pages may point to each other 

• What is the “best” answer to query 
“newspaper”? 
– No single right answer 
– Trick: Pages that actually know about newspapers 

might all be pointing to many newspapers 
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Ranking Nodes on the Graph 

• All web pages are not equally 
“important” 
– www.cuhk.edu.hk vs. 

www.joe-schmoe.com 

• There is large diversity in the 
web-graph node 
connectivity.  
– Rank the pages by the link 

structure! 
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http://www.cuhk.edu.hk/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
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Link Analysis Algorithms  

• We will cover the following Link Analysis 
approaches for computing importance of 
nodes in a graph 
– PageRank 
– Topic-Specific (Personalized) PageRank 
– Web Spam Detection Algorithms, e.g. TrustRank 
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Links as Votes 

• Idea: Links as votes 
– Page is more important if it has more links 

• In-coming links? Out-going links? 

• Think of in-links as votes: 
– www.cuhk.edu.hk has 15,432 in-links 
– www.joe-schmoe.com has 1 in-link 

• Are all in-links equal? 
– Link from important pages count more 
– Recursive question! 
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Example: PageRank Scores 
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Simple Recursive Formulation 

• Each link’s vote is proportional to the 
importance of its source page 

• If page j with importance     has n out-links, 
each link gets          votes. 

• Page j’s own importance is the sum of the 
votes on its in-links 
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PageRank: The “Flow” Model 

• A “vote” from an important 
page is worth more 

• A page is important if it is 
pointed to by other 
important pages 

• Define a “rank” for page j  
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Solving the Flow Equations 

• 3 equations, 3 unknowns, no constants 
– No unique solution 
– All solutions equivalent modulo the scale factor 

• Additional constraint forces uniqueness: 
–   
– Solution:  

• Gaussian elimination method works for small 
examples, but we need a better method for 
large web-size graphs 
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PageRank: Matrix Formulation 

• Stochastic adjacency matrix M 
– Let page    have     out-links 
– If            , then                 , else 

• M is a column stochastic matrix , i.e., columns sum to 1 

• Rank vector r: vector with an entry per page 
–     is the importance score of page    
–   

• The flow equations can be written 
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Example 

• Remember the flow equation:  
• Flow equation in the matrix form: 

 
– Suppose page i links to 3 pages, including  j 
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Eigenvector Formulation 

• The flow equations can be written 
• So the rank vector r is an eigenvector of the 

stochastic web matrix M  
– In fact, its first or principal eigenvector, with 

corresponding eigenvalue 1 
• Largest eigenvalue of M is 1 since M is column 

stochastic 

• We can now efficiently solve for r!  
– The method is called Power iteration. 
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Example: Flow Equation & M 
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Power Iteration Method 

• Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks 

• Power Iteration: a simple iterative scheme 
– Suppose there are N web pages 
– Initialize: 
– Iterate: 
– Stop when  

•                                        is the L1 norm  
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Why Power Iteration Works? 

• Power iteration: 
– A method for finding dominant eigenvector (the 

vector corresponding to the largest eigenvalue) 
•   
•   

 

• Claim: 
– Sequence                                                            

approaches the dominant eigenvector of M 
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Why Power Iteration Works? 

• Proof:  
– Assume M has n linearly independent 

eigenvectors x1, x2, …, xn with corresponding 
eigenvalues 

– Vectors x1, x2, …, xn form a basis and thus we can 
write:  

–   
 

– Repeated multiplication on both sides:  
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Why Power Iteration Works? 

• Proof: (cont.) 
– Repeated multiplication on both sides produces 
 

 
– Since               then                 , so 
– Thus  

• Note if             , then the method won’t converge 
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Random Walk Interpretation 

• Imagine a random web surfer: 
– At any time t, surfer is on some page i 
– At time t+1, the surfer follows an out-link from i 

uniformly at random  
– Ends up on some page j linked from i 
– Process repeats indefinitely 

• Let: 
– p(t) … vector whose ith coordinate is the prob. that 

the surfer is at page i at time t 
– So p(t) is a probability distribution over pages 26 



The Stationary Distribution 

• Where is the surfer at time t+1 
– Follows a link uniformly at random  

 

• Suppose the random walk reaches a state 
 
Then p(t) is stationary distribution of a random walk  

• Our original rank vector r satisfies  
– So r is a stationary distribution for the random 

walk  
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PageRank 

• Three questions: 
– Does this converge? 
– Does it converge to what we want? 
– Are results reasonable? 
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Does This Converge? 
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Does it Converge to What We 
Want? 
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PageRank: Problems 

• Two problems: 
– Spider traps: all out-links are within the group  

• Eventually spider traps absorb all importance 

– Some pages are dead ends (have no out-links) 
• Such pages cause importance to “leak out” 

 

31 



Problem: Spider Traps 

• Power Iteration: 
– Set rj = 1 
–   

• And iterate 

• Example 
 

32 



Solution: Random Teleports 

• The Google solution for spider traps: At each 
time step, the random surfer has two options 
– With prob.    , follow a link at random 
– With prob.            , jump to some random page 
– Common values for     are in the range 0.8 to 0.9 

• Surfer will teleport out of spider trap within a 
few time steps 
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Problem: Dead Ends 

• Power Iteration: 
– Set rj = 1 
–   

• And iterate 

• Example 
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Solution: Always Teleport 

• Teleports: Follow random teleport links with 
probability 1.0 from dead-ends  
– Adjust matrix accordingly 
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Why Teleports Solve the Problem? 

 
 
• Markov chains 

– Set of states X 
– Transition matrix P where  
–     specifying the stationary probability of being at 

each state   
– Goal is to find    such that  
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Why Is This Analogy Useful? 

• Theory of Markov chains 
• Fact: For any start vector, the power method 

applied to a Markov transition matrix P will 
converge to a unique positive stationary 
vector as long as P is stochastic, irreducible 
and aperiodic. 
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Make M Stochastic 

• Stochastic: Every column sums to 1 
• A possible solution: add green links 
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Make M Aperiodic 

• A chain is periodic if there exists k > 1 such 
that the interval between two visits to some 
state s is always a multiple of k. 

• A possible solution: add green links 
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Make M Irreducible 

• From any state, there is a non-zero  probability 
of going from any one  state to any another 

• A possible solution: add green links 
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Solution: Random Jumps 

• Google’s solution that does it all: 
– Makes M stochastic, aperiodic, irreducible 

• At each step, random surfer has two options:  
– With probability    , follow a link at random 
– With probability         , jump to some random page 

• PageRank equation [Brin-Page,98] 
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This formulation assumes that M has no dead ends.  We can either 
preprocess matrix M to remove all dead ends or explicitly follow 
random teleport links with probability 1.0 from dead-ends. 



The Google Matrix 

• PageRank equation [Brin-Page,98] 
 

• The Google Matrix A: 
 

• A is stochastic, aperiodic and irreducible, so 
 

• In practice                   (make 5 steps and jump) 
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Random Teleports (               ) 
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In-class Practice 

• Go to Practice 
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Computing PageRank 

• Key step is matrix-vector multiplication 
–   

• Easy if we have enough main memory to hold 
 

• Say N=1 billion pages 
– We need 4 bytes for each entry (say) 
– 2 billion entries for vectors, approx. 8GB 
– Matrix A has N2 entries: 1018 is a large number!  
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Matrix Formulation 

• Suppose there are N pages 
– Consider page j, with dj out-links 
– We have Mij = 1/|dj| when            and Mij = 0 

otherwise 

• The random teleport is equivalent to: 
–  Adding a teleport link from j to every other page 

and setting transition prob. to  
– Reducing the prob. of following each out-link from  
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Rearranging the Equation 
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Note: Here we assumed M has no 
dead-ends 

[x]N  … a vector of length N with all 
entries x 



Spare Matrix Formulation 

• We just rearranged the PageRank equation 
 
• M is a sparse matrix! (with no dead-ends) 

– 10 links per node, approx. 10N entries 

• So in each iteration, we need to  
– Compute  
– Add a constant                  to each entry in 

• Note: if M contains dead-ends then                       and we 
also have to renormalize           so that it sums to 1  
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PageRank: The Complete Algorithm 
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Sparse Matrix Encoding 

• Encode sparse matrix using only nonzero 
entries 
– Space proportional roughly to number of links  
– Say 10N, or 4*10*1 billion = 40GB 
– Still won’t fit in memory, but will fit on disk  
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Basic Algorithm: Update Step 

• Assume enough RAM to fit         into memory 
– Store         and matrix M on disk 

• Then 1 step of power-iteration is: 
– Initialize all entries of            to  
– For each page p (of out-degree n): 

• Read into memory: p, n, dest1 , …, destn  , rold (p) 
• For j=1…n: rnew (destj ) += β rold (p)/n 
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Analysis 

• Assume enough RAM to fit        into memory 
– Store        and matrix M on disk 

• In each iteration, we have to: 
– Read        and M 
– Write         back to disk 
– IO cost = 2|r| + |M| 

• Question: 
– What if we could not even fit         in memory 
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Block-based Update Algorithm 
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Analysis of Block Update 

• Similar to nested-loop join in databases 
– Break          into k blocks that fit in memory 
– Scan M and          once for each block 

• k scans of M and  
– k(|M|+|r|) + |r| = k|M| + (k+1)|r| 

• Can we do better? 
– Hint: M is much bigger than r (approx. 10-20x), so 

we must avoid reading it k times per iteration 
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Block-Strip Update Algorithm 
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Block-Strip Analysis 

• Break M into stripes 
– Each strip contains only destination nodes in the 

corresponding block of  

• Some additional overhead per stripe 
– But it is usually worth it 

• Cost per iteration 
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In-class Practice 

 
• Compute the final PageRank Score of the 

given graph. 
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