Massive Link Analysis



What’s the Mechanism Behind

How google return
such kind of rankings
(e.g. cuhk homepage
first then Wikipedia
page)? One important
factor is PageRank
score.
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How to make PageRank
computation scalable

* There are billions of web pages and hyperlinks
between them, how to compute their ranking
score (e.g., PageRank) efficiently?



Outline

Web as a Graph
PageRank
Topic-Specific PageRank
Trust-Rank

Further Reading
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 Web as a Graph



Web as a Graph

 Web as a directed graph:
— Nodes: Web pages
— Edges: Hyperlinks

| teach a
class on
Networks.
Classes are
/\ in the
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buiIdir@\ Computer
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J Department
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Web as a Directed Graph
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Broad Question

* How to organize the Web?

* First try: Human curated Web directories
— Yahoo, DMOZ, LookSmart

e Second try: Web Search

— Information Retrieval investigates: Find relevant
docs in a small and trusted set

* Newspaper articles, Patents, etc.

— But: Web is huge, full of untrusted documents,
random things, web spam, etc.



Web Search: 2 Challenges

* Web contains many sources of information:
Who to “trust”?

— Trick: Trustworthy pages may point to each other
 What is the “best” answer to query

“newspaper”?

— No single right answer

— Trick: Pages that actually know about newspapers
might all be pointing to many newspapers



Ranking Nodes on the Graph

* All web pages are not equally
“important”

— www.cuhk.edu.hk vs.
WWW.joe-schmoe.com

* There is large diversity in the
web-graph node
connectivity.

— Rank the pages by the link
structure!
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Link Analysis Algorithms

 We will cover the following Link Analysis
approaches for computing importance of
nodes in a graph

— PageRank
— Topic-Specific (Personalized) PageRank
— Web Spam Detection Algorithms, e.g. TrustRank



Outline

* PageRank



Links as Votes

* |dea: Links as votes
— Page is more important if it has more links
* In-coming links? Out-going links?
* Think of in-links as votes:
— www.cuhk.edu.hk has 15,432 in-links
— www.joe-schmoe.com has 1 in-link

* Are all in-links equal?
— Link from important pages count more
— Recursive question!


http://www.cuhk.edu.hk/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/
http://www.joe-schmoe.com/

Example: PageRank Scores




Simple Recursive Formulation

* Each link’s vote is proportional to the
importance of its source page

* If pagej with importancer; has n out-links,
each link getsr;/n votes.

* Page j’s own importance is the sum of the
votes on its in-links

ri =1;/3+r;/4
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PageRank: The “Flow” Model

* A “vote” from an important
page is worth more

* A pageisimportantifitis
pointed to by other
Important pages 7;

* Define a “rank” for page j

T;
/r. — R
J

d;

1—7

d; ... out-degress of node ¢

; m
a/2 =®

“Flow"” equations:

r, =r,/2+r,/2
P, STel2 +1y,

'm =TI /2
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Solving the Flow Equations

e 3 equations, 3 unknowns, no constants
— No unique solution

— All solutions equivalent modulo the scale factor

e Additional constraint forces uniqueness:

Flow equations:

— Ty +r,+1r, = 1 r, =r,/2+r,/2
r. =r. /2+r
. . . L 2 L 2 L 1 a } m
Solution: r, = 2,7, = 2,7, = < r.=r,/2

e Gaussian elimination method works for small
examples, but we need a better method for
large web-size graphs



PageRank: Matrix Formulation

* Stochastic adjacency matrix M
— Let page 7 have d; out-links
—If i — j,thenM;; = dii, elseM;; =0
* M is a column stochastic matrix, i.e., columns sum to 1
* Rank vector r: vector with an entry per page
— 1;is the importance score of page:
— 2T =1
* The flow equations can be written r; =>_, .. &
r=M-r



Example

« Remember the flow equation: 7 =2_;, &
* Flow equation in the matrix form:
r=M-r

— Suppose page i links to 3 pages, including j

l

Jj [ r;
?[] -

1/3 S

M : r

Il
ﬁ



Eigenvector Formulation

* The flow equations can be writtenr = M - r

* So the rank vector ris an eigenvector of the

stochastic web matrix M

— In fact, its first or principal eigenvector, with

corresponding eigenvalue 1

* Largest eigenvalue of M is 1 since M is column

stochastic

* We can now efficiently solve for r!

— The method is called Power iteration.

NOTE: x is an
eigenvector with
the corresponding
eigenvalue A if:

Ax = AX



Example: Flow Equation & M

r, =r,/2+r,/2
B =K, ja-+2,,

I W

y a m
l%| O
1 0 1
O | % | O

r=M-r

y 2 A

al=|% O

m 0 Y%
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Power lteration Method

* Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks

* Power lteration: a simple iterative scheme

— Suppose there are N web pages .

— Initialize: r® = [1/N,...,1/N]T n=2 g

— Iterate: r*t1) =M . () d; ... out-degress of node i
— Stop when [r(t+1) — r(®)|; < ¢

* [x|1 = 2 1<i<n |Ti] is the L1 norm



Why Power lteration Works?

e Power iteration:

— A method for finding dominant eigenvector (the
vector corresponding to the largest eigenvalue)
.+ — M. 0
e 1(2) =M . (V) = M(Mr(l)) — M2 .0
r3 =M. r2 = M(M2r(0)) — M3 . ¢(0)

e Claim:

—SequenceM - r(® M2 .0 Mk.rO
approaches the dominant eigenvector of M
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Why Power lteration Works?

* Proof:

— Assume M has n linearly independent
eigenvectors Xy, X,, ..., X, with corresponding
eigenvalues \;, Ao, ..., \,, where \{ > o > ... >\,

— Vectors x4, X,, ..., X, form a basis and thus we can
write: (9 = ¢z + oo + ... + cpxn

— Mr9 = M (cix1 + coxo + ...+ cpTy)
= ci(Mzy)+co(Mzo)+ ...+ cp(Mxy,)
= c1(\x1) + co(Nexa) + ...+ cn(Anxy)

— Repeated multiplication on both sides:
MPrO) = ey (Xfzq) + coMsmo) + ...+ en(Moay)



Why Power lteration Works?

* Proof: (cont.)

— Repeated multiplication on both sides produces

A2\ A\
C1T1 + Co )\1 o+ ...+ cCp )\—1 T,

—Slnce>\1>>\2then il .<1,S0 Zz()ask—)oo

— Thus MF*r(0) ~ 01(A1f3?1)

* Note if c1 =0, then the method won’t converge

MFr(©) = )\k




Random Walk Interpretation

* I[magine a random web surfer:
— At any time t, surfer is on some page i
— At time t+1, the surfer follows an out-link from i

uniformly at random
— Ends up on some page j linked from i Q\ E }/
— Process repeats indefinitely )
= Yy

* Let: ~d_ ()

— p(t) ... vector whose " coordinate is the prob. that
the surfer is at page jattime t

— So p(t) is a probability distribution over pages



The Stationary Distribution

 Where is the surfer at time t+1
— Follows a link uniformly at random
p(t+1) =M -p(t)
e Suppose the random walk reaches a state
p(t+1) =M -p(t) = p(t)
Then p(t) is stationary distribution of a random walk
* Our original rank vector r satisfies r=M - r

— Sor is a stationary distribution for the random
walk



PageRank

* Three questions:
— Does this converge?
— Does it converge to what we want?
— Are results reasonable?



Does This Converge?

> (r+1) V-(r)
0—0 -2
I—2] 1
Example:
r, _ 1 ©o 1 ©
r, 0 1 0 1

lteration 0, 1, 2, ...
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Does it Converge to What We

Want?
| (D
6 ’Q rj(r+l>zza
1—> ] 1
Example:
r, _ 1 0 0 0
r, 0 1 0 0

lteration 0, 1, 2, ...
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PageRank: Problems

* Two problems:
— Spider traps: all out-links are within the group
* Eventually spider traps absorb all importance

— Some pages are dead ends (have no out-links)
* Such pages cause importance to “leak out”



Problem: Spider Traps

e Power lteration:
— Set = 1

— T = Zi—)j d;

Ti

 And iterate

 Example
. | 13 2/6  3/12
r, | = /3 16 2/12
Iy /3 3/6 712

lteration 0, 1, 2, ...

5/24

3/24
16/24

y a m

y| 7 72 0
al ' 0 0
m| O vz 1

r, =r,/2+r,/2

r, =r,/2

rl]l = rﬂ /2 + rl'll

0

0
1
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Solution: Random Teleports

* The Google solution for spider traps: At each
time step, the random surfer has two options

— With prob. 3, follow a link at random
— With prob. 1 — 8, jump to some random page
— Common values for 5 are in the range 0.8 to 0.9

e Surfer will teleport out of spider trap within a
few time steps




Problem: Dead Ends

e Power lteration:

— Set =1
—Tj = Zi—)j c%
* And iterate
 Example

FY .

t, 1/3
r, | = 1/3
ey 1/3

2/6

1/6
1/6

y a m

y| % 72 0
al % 0

m| O vz 0

r, =r,/2+r,/2

By Sl
r,=r,/2
3/12  5/24 0
2/12 3/24 ... 0
1/12  2/24 0

lteration 0, 1, 2, ...
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Solution: Always Teleport

e Teleports: Follow random teleport links with
probability 1.0 from dead-ends

— Adjust matrix accordingly

—

i3
V4
\
y a m y a m
y| % Vs 0 y| % Y5 Y4
5 0 0 al % 0 Y4
m| O Y 0 m| O Y5 Y4




Why Teleports Solve the Problem?

r(t+1) — Afp(2)

* Markov chains
— Set of states X
— Transition matrix P where P;; = P(X; = i|X;_; = j)

— 7 specifying the stationary probability of being at
each state z € X

— Goal is to find 7™ such that @ = P



Why Is This Analogy Useful?

* Theory of Markov chains

* Fact: For any start vector, the power method
applied to a Markov transition matrix P will
converge to a unique positive stationary
vector as long as P is stochastic, irreducible
and aperiodic.
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Make M Stochastic

» Stochastic: Every column sums to 1
* A possible solution: add green links

A:M—I—aT(%e)

e a; = 1 if node ¢ has out degree 0, otherwise 0.

N -

m

e c...vector of all 1s

y a m
72 72 | 1/3
72 0 1/3
0 2 | 1/3

r, =ry/2+r,/2+r, /3
r, =r,/2+tr,/3
r,=r,/2 +r /3
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Make M Aperiodic

* Achainis periodic if there exists k > 1 such
that the interval between two visits to some
state s is always a multiple of k.

* A possible solution: add green links
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Make M Irreducible

* From any state, there is a non-zero probability
of going from any one state to any another

* A possible solution: add green links

40



Solution: Random Jumps

* Google’s solution that does it all:

— Makes M stochastic, aperiodic, irreducible

* At each step, random surfer has two options:
— With probability 5, follow a link at random
— With probability1 — 3, jump to some random page

* PageRank equation [Brin-Page,98]
ry = Zz’—>j 2_ + (1 _@%

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow

random teleport links with probability 1.0 from dead-ends.
41



The Google Matrix

PageRank equation [Brin-Page,98]
rj =i BE+(1—5)x
The Google Matrix A:
A=M+(1-p)re-eT
A is stochastic, aperiodic and irreducible, so

r(t+1) — A . p(t)

In practice 5 =0.8,0.9 (make 5 steps and jump)

42



Random Teleports (5 = 0.8)

M 1/n-1-17
0.8-1%4+0.2-%
1/21/2 0 1/3 1/3 1/3
0812 0 0| *+09.211/31/31/3
0 12 1 143 113 1/3

y |7/15 715 1/15
a [U1s V1S 1S
ii| 1718 713 13715

0.8+0.2-%

0\-”.} - A
y 1/73 033 0.24 0.26 33
g = 13 020 020 018 ... 5/33

m 1/3 046 052 0.56 21/33
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In-class Practice

* Go to Practice




Computing PageRank

e Key step is matrix-vector multiplication
— pnew _— A. ,r.old
e Easy if we have enough main memory to hold

A, 7qold’ pnew

e Say N=1 billion pages
— We need 4 bytes for each entry (say)
— 2 billion entries for vectors, approx. 8GB
— Matrix A has N? entries: 10'8 is a large number!



Matrix Formulation

e Suppose there are N pages
— Consider page j, with d; out-links
— We have M; = 1/|d;| when j — ¢ and M; =0
otherwise
* The random teleport is equivalent to:

— Adding a teleport link from j to every other page
and setting transition prob. to (1 — 8)/N

— Reducing the prob. of following each out-link from
1/]d;| to 5/[d;]



Rearranging the Equation

QT:A°T,Wher6Aij:5Mij—|—%
N
® 7, = ijl Aij Ty

o =3, [5Mz‘j + %} T
N 1-8 N
=D =1 BMij -1 + Tﬂ D im1 T
= Z;\le BM;; - rj + £, since >or; =1

e Soweget: r=0M-r+ [%]N

Note: Here we assumed M has no [X]y --- @ vector of length N with all
dead-ends entries x
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Spare Matrix Formulation

 We just rearranged the PageRank equation

o [,

* M is a sparse matrix! (with no dead-ends)
— 10 links per node, approx. 10N entries

 So in each iteration, we need to
— Compute prew — A . pold
— Add a constant (1 — 8)/N to each entry in yrew

 Note: if M contains dead-ends then)_; 7"°* < 1 and we
also have to renormalize ™% so that it sums to 1



PageRank: The Complete Algorithm

e Input: Graph G and parameter 3

— Directed graph G with spider traps and dead ends

— Parameter

e Output: PageRank vector r

— Set: rj(-o) = %,t =1
— do:
R I O I T L s
J- T = 25 P,
P = 0 if in-deg. of j is 0

x Now re-insert the leaked PageRank:
Vi r;.t) = r’gt) + 122 where S = D r’g-t)
x t=1t+1
— while . \r§t) — frj(-t_l)\ > €
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Sparse Matrix Encoding

* Encode sparse matrix using only nonzero
entries

— Space proportional roughly to number of links
— Say 10N, or 4*10*1 billion = 40GB
— Still won’t fit in memory, but will fit on disk

0 3 1, 95
7,064,113, 117, 245
2 2 13, 23

U1
—_\




Basic Algorithm: Update Step

* Assume enough RAM to fit »"** into memory

— Store r°“ and matrix M on disk

* Then 1 step of power-iteration is:
— Initialize all entries of °* to (1 — 8)/N

— For each page p (of out-degree n):

* Read into memory: p, n, dest,, ..., dest_ , ro'¢ (p)
* Forj=1..n: "% (dest; ) += B r°'% (p)/n

rold

o src  degree destination o
: 0 5 .56 .
; 1 4 17,64, 113 117 5
4 2 2 13, 23 +
5 5
6 6




Analysis

* Assume enough RAM to fit 7"““into memory

old

— Store 7°** and matrix M on disk

* |In each iteration, we have to:
— Readr°® and M
— Write »™% back to disk
— 10 cost=2|r| + |M]

* Question:

— What if we could not even fit »»¢*in memory



Block-based Update Algorithm

rmew src  degree destination yale
o e Jotss L
1

1 2 0,5

> 2 (3.4

o W N B O



Analysis of Block Update

* Similar to nested-loop join in databases
— Break r™¢* into k blocks that fit in memory
— Scan M and r°¢ once for each block

e kscans of M and r°!
—k(IM]+]r]) + |r] = k|M] + (k+1)|r]|

 Can we do better?

— Hint: M is much bigger than r (approx. 10-20x), so
we must avoid reading it k times per iteration



Block-Strip Update Algorithm

Src degree  destination

rnew _

| 3 0
2 2 1
0 4 3

2 3
0 4 S
| 3 5
2 2 4

rOId

o W N O



Block-Strip Analysis

* Break M into stripes

— Each strip contains only destination nodes in the
corresponding block of rmew

 Some additional overhead per stripe
— But it is usually worth it
* Cost per iteration
IM|(14¢€)+ (kE+1)|r|



In-class Practice

 Compute the final PageRank Score of the
given graph.

Go back
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