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       Big Data Analytics

1



Motivation

• Do you want to work in these companies?
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Motivation of the Course

• Do you want to understand what is big data?
What are the main characteristics of big data?

• Do you want to understand the infrastructure
and techniques of big data analytics?

• Do you want to know the research challenges
in the area of big data learning and mining?
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Course Objective

1. To understand the current key issues on big data
and the associated business/scientific data
applications;

2. To teach the fundamental techniques and
frameworks in achieving big data analytics with
scalability and streaming capability

3. To understand basic optimization methods towards
solving big data related problems

4. Able to apply software tools for big data
analytics
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Course Description
• Course Homepage: https://xuhappy.github.io/courses/BigData/
• This course aims at teaching students the state-of-the-art big data 

analytics, including techniques, software, applications, and perspectives 
with massive data.

• The class will cover, but not be limited to, the following topics:
– cloud computing, big data processing frameworks, distributed file systems 

such as Google File System, Hadoop Distributed File System, CloudStore, 
and map-reduce technology;

– machine learning technology, SVM models, Deep Neural Networks
– Data Mining Methods, Clustering, Dimension Reduction, Recommendation systems
– optimization methods, convex optimization, online learning
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Textbook for Reference
• Mining of Massive Datasets
• Anand Rajaraman

– web and technology entrepreneur
– co-founder of Cambrian Ventures and

Kosmix
– co-founder of Junglee Corp (acquired

by Amazon for a retail platform)
• Jeff Ullman

– The Stanford W. Ascherman Professor
of Computer Science (Emeritus)

– Interests in database theory, database
integration, data mining, and
education using the information
infrastructure.
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Textbook

• Amazon
– http://www.amazon.com/Mining-Massive-

Datasets-Anand-Rajaraman/dp/1107015359

• PDF of the book for online viewing
– http://infolab.stanford.edu/~ullman/mmds.html
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Prerequisites

• Algorithms
– Basic data structures

• Operating Systems
-   Linux

• Basic mathematics 
– Moments, typical distributions, …

• Programming
– Your choice

• We provide some background, but the class 
will be fast paced    8



What Will We Learn?

• We will learn to analyze different types of data:
– Data is high dimensional
– Data is a graph
– Data is infinite/never-ending
– Data is labeled

• We will learn to use different models of
computation:
– MapReduce
– Streams and online algorithms
– Single machine in-memory
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What Will We Learn?

• We will learn to solve real-world
problems:
– Recommender systems
– Link analysis
– Digit handwritten recognition
– Community detection

• We will learn various “tools”:
– Linear algebra (SVD, Rec. Sys., Communities)
– Optimization (stochastic gradient descent)
– Various big data processing frameworks:

MapReduce, Hadoop
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Class Project

• Project is for everyone
• One-two person/s per project group
• Each group is to design and implement a big

data-related project of choice
• Detailed schedule will be announced later
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MapReduce

• Map:
– Accepts input

key/value pair
– Emits intermediate

key/value pair

Very 
big
data

Result
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Partitioning
Function

• Reduce:
– Accepts intermediate

key/value* pair
– Emits output

key/value pair
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YARN Architectural Overview 



Mining Data Stream

• Stream Management is important when the
input rate is controlled externally:
– Google queries
– Twitter or Facebook status updates

• We can think of the data as infinite and non-
stationary (the distribution changes over time)
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Clustering

• Given a set of points, with a notion of distance
between points, group the points into some number
of clusters, so that
– Members of a cluster are close/similar to each other
– Members of different clusters are dissimilar
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Presentation Notes
To understand the structure of the data



Dimensionality Reduction
• Discover hidden correlations/topics

– Words that occur commonly together

• Remove redundant and noisy features
– Not all words are useful

• Interpretation and visualization
• Easier storage and processing of the data
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Recommender System

• Main idea: Recommend items to customer x
similar to previous items rated highly by x

• Example:
– Movie recommendations

• Recommend movies with same actor(s),
director, genre, …

– Websites, blogs, news
• Recommend other sites with “similar”

content
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Link Analysis

• Computing importance of nodes in a graph
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Large Scale Classification

How does a computer know whether a news is 
technology and health? Classification 19

Presenter
Presentation Notes
News change every second, volume is large



Online Learning Algorithms

How to update the decision function and make decision as a 
new sample comes? 20



Introduction to Big Data
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Definition of Big Data

• Big data is a collection of data sets so large
and complex that it becomes difficult to
process using on-hand database management
tools or traditional data processing
applications.

From wiki
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Evolution of Big Data

• Birth: 1880 US census
• Adolescence: Big Science
• Modern Era: Big Business
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Birth: 1880 US census
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The First Big Data Challenge

• 1880 census
• 50 million people
• Age, gender (sex),

occupation, education
level, no. of insane
people in household
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Presenter
Presentation Notes
Took over seven years to manually tabulate and report on the data



The First Big Data Solution

• Hollerith Tabulating
System

• Punched cards – 80
variables

• Used for 1890 census
• 6 weeks instead of 7+

years
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A mechanical device called the Hollerith Tabulating system, which worked with punch cards that could hold about 80 variables. 
The HT system revolutionized the value of census data, making it actionable and increasing its value an untold amount.  Analysis took six weeks instead of seven years.  It allowed the government to act on information in a reasonable amount of time.

The ability to analyze the 1890 census led to an improved understanding of the populace, which the government could use to shape economic and social policies ranging from taxation to education to military conscription.



Manhattan Project (1946 - 1949)

• $2 billion (approx. 26
billion in 2013)

• Catalyst for “Big Science”
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The next giant leap for Big Data Analytics came with the Manhattan project, the US development of the atomic bomb during World War II.  

The Manhattan project not only introduced the concept of Big Data analysis with computers, it was also the catalyst for Big Science



Space Program (1960s)

• Began in late 1950s

• An active area of big
data nowadays
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It was driven by a Space Race between the Sovient Union and the United States, the launch of the first man-made objective to orbit the Earth, the USSR’s Sputnik 1, on 4 October 1957, the first Moon landing by the American Apollo 11 craft on 20 July 1969.



Big Science vs. Big Business

• Common
– Need technologies to work with data
– Use algorithms to mine data

• Big Science
– Source: experiments and research conducted in

controlled environments
– Goals: to answer questions, or prove theories

• Big Business
– Source: transactions in nature and little control
– Goals: to discover new opportunities, measure

efficiencies, uncover relationships
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Presentation Notes
from sources that are transactional in nature and have little control over the original of the data

Use Big Data to 

uncover relationships among what was thought to be unrelated data sets




Big Data is Everywhere!

• Lots of data is being
collected and warehoused
– Web data, e-commerce
– Purchases at department/

grocery stores
– Bank/Credit Card

transactions
– Social Networks
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How Big is Big ? 
¢  2008: Google processes 20 PetaByte per Day (Peta=1015) 

¢  Apr 2009: Facebook has 2.5 PB user data + 15 TB/day 

¢  May 2009: eBay has 6.5 PB user data + 50 TB/day 

¢  2011: Yahoo! Has 180-200 PB of data 

¢  2012: Facebook ingests 500TB/day 

640K ought to be 
enough for anybody. 



How many users and objects? 
¢  Flickr has >6 billion photos 

¢  Facebook has 1.15 billion active users 

¢  Google is serving >1.2 billion queries/day on more than 27 
billion items 

¢  >2 billion videos/day watched on YouTube 

32
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How much data? 

¢  Modern applications use massive data: 
l Rendering 'Avatar' movie required >1 petabyte

of storage
l eBay has >6.5 petabytes of user data
l CERN's LHC will produce about 15 petabytes of

data per year
l In 2008, Google processed 20 petabytes per day
l German Climate computing center dimensioned

for 60 petabytes of climate data
l Someone estimated in 2013 that Google had

10 exabytes on disk and ~ 5 exabytes on tape backup
l NSA Utah Data Center is said to have 5 zettabyte (!)

¢  How much is a zettabyte? 
l 1,000,000,000,000,000,000,000 bytes
l A stack of 1TB hard disks that is 25,400 km high

15 
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25,400 km
 



Volume VolumeVolume

Characteristics of Big Data: 4V 
Variety

Structured, semi-
structured, unstructured, 
text, pictures, 
multimedia 

Veracity

Volume

Uncertainty due to data 
inconsistency & 
incompleteness,
ambiguities, deception,
model approximation

Velocity

Batch data, real-time 
data, streaming data, 
milliseconds to seconds 
to respond

Volume

From terabytes to 
exabyte to zetabytes of 
existing data to process

Text

Videos

Images

Audios8 billion TB in 2015, 
40 ZB in 2020
5.2TB per person

New sharing over 2.5 
billion per day
new data over 500TB 
per day
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How much computation? 

¢  No single computer can 
process that much data 
l Need many computers!

¢  How many computers do 
modern services need? 
l Facebook is thought to have more than 60,000 servers
l 1&1 Internet has over 70,000 servers
l Akamai has 95,000 servers in 71 countries
l Intel has ~100,000 servers in 97 data centers
l Microsoft reportedly had at least 200,000 servers in 2008
l Google is thought to have more than 1 million servers,

is planning for 10 million (according to Jeff Dean)

17 
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What to do with More Data ? 
¢  Answering factoid questions 

l Pattern matching on the Web
l Works amazingly well

¢  Learning relations 
l Start with seed instances
l Search for patterns on the Web
l Using patterns to find more instances

Who shot Abraham Lincoln? --> ??? shot Abraham Lincoln 

Birthday-of(Mozart, 1756) 
Birthday-of(Einstein, 1879) 

Wolfgang Amadeus Mozart (1756 - 1791) 
Einstein was born in 1879 

PERSON (DATE – 
PERSON was born in DATE 

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) 
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; … )
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What to do with More Data ? (cont’d) 
Personalization 

• 100-1000M users

• Spam filtering
• Personalized targeting

& collaborative filtering
• News recommendation
• Advertising



Big Data Analytics

• Definition: A process of inspecting, cleaning,
transforming, and modeling big data with the
goal of discovering useful information, suggesting
conclusions, and supporting decision making

• Hot in both industrial and research societies
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Big Data Analytics
• Related conferences

– IEEE Big Data
– IEEE Big Data and

Distributed Systems
– WWW
– KDD
– WSDM
– CIKM
– SIGIR

– AAAI/IJCAI
– NIPS
– ICML
– TREC
– ACL
– EMNLP
– COLING
– …
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Types of Analytics at eBay
• Basically measure anything possible - A few examples:

Marketing Buyer 
Experience Finance Trust & 

Safety

Technology 
Operations

Customer 
Service Loyalty Information 

Security

Infrastructure Finding User 
Behavior

Seller 
Experience
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What is Data Mining?

• Discovery of patterns and models that are:
– Valid: hold on new data with some certainty
– Useful: should be possible to act on the item
– Unexpected: non-obvious to the system
– Understandable: humans should be able to

interpret the pattern

• A particular data analytic technique

41
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Data Mining Tasks 

¢  Descriptive Methods: Find human-interpretable 
patterns that describe the data, e.g. 
l Clustering
l Dimensionality Reduction
l Association Rule Discovery
l Sequential Pattern Discovery

¢  Predictive Methods: Use some variables to predict 
unknown or future values of other variables, e.g. 
l Classification
l Regression
l Novelty Detection

12/1/16 



Data Mining: Culture

• Data mining overlaps with:
– Databases: Large-scale data, simple queries
– Machine learning: Small data, Complex models
– Statistics: Predictive Models

• Different cultures:
– To a DB person, data mining is an

extreme form of analytic
processing – queries that
examine large amounts of data

• Result is the query answer
– To a stats/ML person, data-

mining is the inference of models
• Result is the parameters of the

model

Statistics/
AI

Machine 
learning/
Pattern 

Recognition

Database 
systems

Data 
Mining

43



Relation between Data Mining and 
Data Analytics

• Analytics include both data analysis (mining)
and communication (guide decision making)

• Analytics is not so much concerned with
individual analyses or analysis steps, but with
the entire methodology
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Meaningfulness of Answers

• A big data-analytics risk is that you will
“discover” patterns that are meaningless

• Statisticians call it Bonferroni’s principle:
– (roughly) if you look in more places for interesting

patterns than your amount of data will support,
you are bound to find crap
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Examples of Bonferroni’s Principle

• Total Information Awareness (TIA)
– In 2002, intend to mine all the data it could find,

including credit-card receipts, hotel records, travel
data, and many other kinds of information in
order to track terrorist activity

– A big objection was that it was looking for so
many vague connections that it was sure to find
things that were bogus and thus violate innocents’
privacy
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The “TIA” Story

• Suppose we believe that certain groups of
evil-doers are meeting occasionally in hotels
to plot doing evil

• We want to find (unrelated) people who at
least twice have stayed at the same hotel on
the same day
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Details of The “TIA” Story

• 109 people might be evil-doers
• Examining hotel records for 1000 days
• Each person stays in a hotel 1% of the time (10

days out of 1000)
• Hotels hold 100 people (so 105 hotels, 1% of

total people)
• If everyone behaves randomly (i.e., no evil-

doers) will the data mining detect anything
suspicious?
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Calculation (1)

• Probability that given persons p and q will be
at the same hotel on given day d:
– 1/100 × 1/100 × 10-5 = 10-9.

• Probability that p and q will be at the same
hotel on given days d1 and d2:
– 10-9 × 10-9 = 10-18.

• Pairs of days:
– 5×105

p at
some
hotel

q at
some
hotel Same

hotel
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Calculation (2)

• Probability that p and q will be at the same
hotel on some two days:
– 5×105 × 10-18 = 5×10-13

• Pairs of people:
– 5×1017

• Expected number of “suspicious” pairs of
people:
– 5×1017 × 5×10-13 = 250,000
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Summary of The “TIA” Story

• Suppose there are 10 pairs of evil-doers who
definitely stayed at the same hotel twice

• Analysts have to sift through 250,000 candidates
to find the 10 real cases

• Make sure the property, e.g., two people stayed
at the same hotel twice, does not allow so many
possibilities that random data will surely produce
“facts of interest”

• Understanding Bonferroni’s Principle will help
you look a little less stupid than a
parapsychologist
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In-class Practice

• Go to practice
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Seven Typical Statistical Problems

1. Object detection(e.g. quasars): classification
2. Photometric redshift estimation: regression,

conditional density estimation
3. Multidimensional object discovery: querying,

dimension reduction, density estimation,
clustering

4. Point-set comparison: testing and matching
5. Measurement errors: errors in variables
6. Extension to time domain: time series analysis
7. Observation costs: active learning
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Object Detection: Classification
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Regression/Conditional Density 
Estimation
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Querying/Dimension Reduction/Density 
Estimation/Clustering
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Time Series Analysis
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Seven Lessons in Learning from Big Data

1. Big data is a fundamental phenomenon
2. The system must change
3. Simple solutions run out of steam
4. ML becomes important
5. Data quality becomes important
6. Temporal analysis become important
7. Prioritized sensing becomes important
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1. Big data is a fundamental phenomenon
2. The system must change
3. Simple solutions run out of steam
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Seven Lessons in Learning from Big Data
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Current Options

1. Subsample (e.g. then use R, Weka)
2. Use a simpler method (e.g. linear)
3. Use brute force (e.g. Hadoop)
4. Faster algorithm
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What Makes this Hard?

1. The key bottlenecks are fundamental
computer science/numerical methods
problems of many types

2. Useful speedups are needed.
1. Error guarantees
2. Known runtime growths
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What Makes this Hard?

1. The key bottlenecks are fundamental
computer science/numerical methods
problems of many types

2. Useful speedups are needed
1. Error guarantees
2. Known runtime growths
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Seven Lessons in Learning from Big Data
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1. Big data is a fundamental phenomenon
2. The system must change
3. Simple solutions run out of steam
4. ML becomes important
5. Data quality becomes important
6. Temporal analysis become important
7. Prioritized sensing becomes important

Seven Lessons in Learning from Big Data
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Seven Typical Tasks of Machine 
Learning/Data Mining 

1. Querying: spherical range-search O(N), orthogonal range-search O(N),
nearest-neighbor O(N), all-nearest-neighbors O(N2)

2. Density estimation: mixture of Gaussians, kernel density estimation
O(N2), kernel conditional density estimation O(N3)

3. Classification: decision tree, nearest-neighbor classifier O(N2), kernel
discriminant analysis O(N2), support vector machine O(N3), Lp SVM

4. Regression: linear regression, LASSO, kernel regression O(N2), Gaussian
process regression O(N3)

5. Dimension reduction: PCA, non-negative matrix factorization, kernel
PCA O(N3), maximum variance unfolding O(N3); Gaussian graphical
models, discrete graphical models

6. Clustering: k-means, mean-shift O(N2), hierarchical (FoF) clustering
O(N3)

7. Testing and matching: MST O(N3), bipartite cross-matching O(N3), n-
point correlation 2-sample testing O(Nn), kernel embedding
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Seven Typical Tasks of Machine 
Learning/Data Mining 

1. Querying: spherical range-search O(N), orthogonal range-search O(N),
nearest-neighbor O(N), all-nearest-neighbors O(N2)

2. Density estimation: mixture of Gaussians, kernel density estimation
O(N2), kernel conditional density estimation O(N3)

3. Classification: decision tree, nearest-neighbor classifier O(N2), kernel
discriminant analysis O(N2), support vector machine O(N3) , Lp SVM

4. Regression: linear regression, kernel regression O(N2), Gaussian process
regression O(N3), LASSO

5. Dimension reduction: PCA, non-negative matrix factorization, kernel
PCA O(N3), maximum variance unfolding O(N3), Gaussian graphical
models, discrete graphical models

6. Clustering: k-means, mean-shift O(N2), hierarchical (FoF) clustering
O(N3)

7. Testing and matching: MST O(N3), bipartite cross-matching O(N3), n-
point correlation 2-sample testing O(Nn), kernel embedding

Computational
Problem!
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7 tasks of machine learning/data minging
1.  Querying: spherical range-search O(N), orthogonal range-search O(N), nearest-neighbor O(N), all-nearest-neighbors O(N^2)
2.  Density estimation: mixture of Gaussians, kernel density estimation O(N^2), kernel conditional density estimation O(N^3), submanifold density estimation[Grey, nips2010, O(N^3)], convex adaptive kernel estimation[Grey, AISTATS 2011, O(N^4)]
3.  Classification:decision tree, nearest-neighbor classifier O(N^2), kernel discriminant analysis O(N^2), support vector machine O(N^3), LpSVM, non-negative SVM [Guan et al. ICDM 2011]
4.  Regression: linear regression, LASSO, kernel regresssion O(N^2), Gaussian process regression O(N^3)
5.  Dimension reduction: PCA, non-negative matrix factorizatino, kernel PCA O(N^3), maximum variance unfolding O(N^3); Gaussian graphical models, discrete graphical models, rank-preserving maps[Ouyang and Gray, ICML 2008] o(N^2); isometric separation maps [Gray, MLSP 2009] O(N^3), isometric NMF[Gray, MLSP 2009] O(N^3), functional ICA [Mehta and Gray, 2009], density preserving maps [Gray in prep] O(N^3)
6.  Clustering: K-means, mean-shirt O(N^2), hierarchical (FoF) clustering O(N^3)
7.  Testing and matching: MST O(N^3), bipartite cross-matching O(N^3), n-point correlation 2-sample testing O(N^n), kernel embedding 




1. Divide and Conquer

• Multidimensional trees:
– K-d trees [Bentley 1970], ball-trees [Omohundro 1991], spill trees [Liu,

Moore, Gray, Yang,nips2004], cover tree [Beygelzimer et al.2006] ,
cosine tree [Holmes, Isbell, Gray, Nips 2009], subspace trees [Lee and
Gray nips 2009], cone trees [Ram and Gray kdd2012], max-margin
trees [Ram and Gray SDM 2012], kernel trees [Ram and Gray]
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2. Function Transforms

• Fastest approach for:
– Kernel estimation (low-ish

dimension): dual-tree fast
Gauss transforms
(multipole/Hermite
expansions) [Lee, Gray, Moore
NIPS 2005], [Lee and Gray, UAI 2006]

– KDE and GP (kernel density 
estimation, Gaussian process 
regression) (high-D): random 
Fourier functions [Lee and Gray, 
in prep]

Generalized N-body 
approach is fundamental: 

like multidimensional 
generalization of FFT
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3. Sampling
• Fastest approach for (approximate):
− PCA: cosine trees [Holmes, Gray, lsbell, NIPS 2008]
− Kernel estimation: bandwidth learning [Holnes, Gray, lsbell, NIPS
2006],[Holmes, Gray, lsbell, UAI 2007], Monte Carlo multipole method (with
SVD trees) [Lee & Gray, NIPS 2009], shadow densities [Kingravi et al., under
review]
−Nearest-neighbor: distance-approx., spill trees with random proj[Liu, Moore,
Gray, Yang, NIPS 2004], rank-approximate: [Ram, Ouyang, Gray, NIPS 2009]

Rank-approximate NN:
• Best meaning-retaining

approximation criterion in  the 
face of high-dimensional distance

• More accurate than LSH

3. If you're going to do
sampling, try smarter 

(e.g. stratified) sampling
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3. Sampling
• Active learning: the

sampling can depend on
previous samples
− Linear classifiers:

rigorous framework for
pool-based active
learning [Sastry and Gray,
AISTATS 2012]

• Empirically allows
reduction in the number
of objects that require
labeling

• Theoretical rigor:
unbiasedness
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4. Caching

• Fastest approach for (using disk):
− Nearest-neighbor, 2-point: Disk-based tree

algorithms in Microsoft SQL Server [Riegel, Aditya,
Budavari, Gray, in prep]
• Builds k-d tree on top of built-in B-trees
• Fixed-pass algorithm to build k-d tree

No. of points MLDB(Dual  tree) Naive

40,000 8 seconds 159 seconds

200,000 43 seconds 3480 seconds

10,000,000 297 seconds 80 hours

20,000,000 29 mins 27 sec 74 days

40,000,000 58 mins 48 sec 280 days

40,000,000 112 mins 32 sec 2 years 72



5. Streaming/Online
• Fastest approach for (approximate, or streaming):

− Online learning/stochastic optimization: just use the current
sample to update the gradient

• SVM (squared hinge loss): stochastic Frank-Wolfe[Ouyang
and Gray, SDM 2010]

• SVM, LASSO, et al.: noise-adaptive stochastic
approximation (NASA)[Ouyang and Gray, KDD 2010],
accelerated non-smooth SGD (ANSGD) [Ouyang and Gray,
ICML 2012]
− faster than SGD
− solves step size problem
− beats all existing convergence rates

Update a model
True response

user

Make prediction
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• Fastest approach for (using many machines):
− KDE, GP, n-point: distributed trees [Lee and Gray , SDM 2012 Best Paper], 6000+

cores; [March et al, Supercomputing 2012], 100K cores
• Each process owns the global tree and its local tree
• First log  p levels  built in parallel; each process determines  where to send

data
• Asynchronous averaging; provable convergence

− SVM, LASSO, et al.: distributed online optimization [Quyang and Gray, in prep]
• Provable theoretical speed  up for the first time6. Parallelized fast 

alg. > parallelized 
brute force

6. Parallelism
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7. Transformations between Problems

• Change the problem type:
− Linear algebra on kernel  matrices  N-body inside conjugate

gradient [Gray, TR 2004]
− Euclidean graphs  N-body problems [March & Gray, KDD 2010]
− HMM as graphmatrix factorization [Tran & Gray, in prep]

• Optimizations: reformulate the objective and constraints:
− Maximum variance unfolding: SDP via Burer-Monteiro convex

relaxation [Vasiloglou, Gray, Anderson MLSP 2009]
− Lq SVM, 0<q<1: DC programming [Guan & Gray, CSDA 2-11]
− L0 SVM: mixed integer nonlinear program via perspective cuts

[Guan & Gray, under review]
− Do reformulations automatically [Agarwal et al, PADL 2010],[Bhat

et al, POPL 2012]
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7. Transformations between Problems

• Create new ML methods with desired
computational properties:
− Density estimation trees: nonparametric

density estimation, O(NlogN) [Ram & Gray, KDD
2011]

− Local linear SVMs: nonlinear classification,
O(NlogN) [Sastry & Gray, under review]

− Discriminative local coding: nonlinear 
classification O(NlogN) [Mehta & Gray, under 
review]

When all else fails, 
change the problem
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What is cloud computing? 
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The best thing since sliced bread? 
¢  Before clouds… 

l Grids
l Vector supercomputers
l …

¢  Cloud computing means many different things: 
l Large-data processing
l Rebranding of web 2.0
l Utility computing
l Everything as a service
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Rebranding of web 2.0 
¢  Rich, interactive web applications 

l Clouds refer to the servers that run them
l AJAX as the de facto standard (for better or worse)
l Examples: Facebook, YouTube, Gmail, …

¢  “The network is the computer”: take two 
l User data is stored “in the clouds”
l Rise of the netbook, smartphones, etc.
l Browser is the OS
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Utility Computing 
¢  What? 

l Computing resources as a metered service (“pay as you go”)
l Ability to dynamically provision virtual machines

¢  Why? 
l Cost: capital vs. operating expenses
l Scalability: “infinite” capacity
l Elasticity: scale up or down on demand

¢  Does it make sense? 
l Benefits to cloud users
l Business case for cloud providers

I think there is a world 
market for about five 
computers.  
– Thomas J Watson of
IBM, 1943
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Enabling Technology: Virtualization 

Hardware 

Operating System 

App App App 

Traditional Stack 

Hardware 

OS 

App App App 

Hypervisor 

OS OS 

Virtualized Stack 
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Everything as a Service 
¢  Utility computing = Infrastructure as a Service (IaaS) 

l Why buy machines when you can rent cycles?
l Examples: Amazon’s EC2, Rackspace

¢  Platform as a Service (PaaS) 
l Give me nice API and take care of the maintenance, upgrades, …
l Example: Google App Engine

¢  Software as a Service (SaaS) 
l Just run it for me!
l Example: Gmail, Salesforce
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How do we scale up  
processing for Big Data ? 

Or: How to run Algorithms on MANY REAL and FAULTY 
boxes ? 
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Single Node Architecture 

12/1/16 
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Motivation: Google Example 
¢  20+ billion web pages x 20KB = 400+ TB 

¢  1 computer reads 30-35 MB/sec from disk 
l ~4 months to read the web

¢  ~1,000 hard drives to store the web 

¢  Takes even more to do something useful 
with the data! 

¢  Today, a standard architecture for such problems is 
emerging: 
l Cluster of commodity Linux nodes
l Commodity network (ethernet) to connect them

12/1/16 



Mem 

Disk 

CPU 

Mem 

Disk 

CPU 

… 

Switch 

Each rack contains 16-64 nodes 

Mem 

Disk 

CPU 

Mem 

Disk 

CPU 

… 

Switch 

Switch 1 Gbps between  
any pair of nodes 
in a rack 

2-10 Gbps backbone between racks

In 2011, it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO  
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Using Commodity Hardware 
• 80-90’s: High Performance Computing

Very reliable, custom built, expensive

• Now: Consumer hardware
Cheap, efficient, easy to replicate,
BUT not very reliable,

• MUST deal with it!
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Why commodity machines? 

Source: Barroso and Urs Hölzle (2009); performance figures from late 2007 
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• Performance goal
• 1 failure per year
• for a 1000-machine Cluster 

• Poisson approximation

• Assume failure rate   per machine
• Poisson rates of independent random variables are additive,

so we can combine
=> With Fault Intolerant Engineering 
We need a rate of 1 failure per 1000 years per machine 
• Fault tolerance

Assume we can tolerate k faults among m machines in t time

Fault Tolerance 

not IBM Deskstar!
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Fault tolerance 

machine faults 

QoS machine reliability 

fault free
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Advantages of scaling “out” 

So why not? 



In-class Practice

• Let us examine fragrance sales at ebay in a
year.   Suppose
– the best selling product sold 100,000 pieces,
– the 10th best-selling product sold 1,000 pieces,
– the 100th best selling product sold 10 pieces.

• How to derive the relationship between the
number of fragrance sold and the order?
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In-class Practice

• Let y be the number of sales of the x-th best-
selling fragrance products in a year at ebay.

y=105*x-2

Power law: also 
referred to Zipf’s law

Has the property of scale invariance

Go back
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Presentation Notes
scaling by a constant c simply multiplies the original power-law relation by the constant c^k
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