
Scalable Clustering
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Motivation

• Large-scale and high
dimensional data

– Social networks

– Images

– Web documents

– …

• Understand the
structure of data
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Motivation

• Traditional clustering methods (e.g., K-means)
– Takes many iterations to converge
– Very sensitive to initialization
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The Problem of Clustering

• Given a set of points, with a notion of
distance between points, group the points
into some number of clusters, so that
– Members of a cluster are close/similar to each other

– Members of different clusters are dissimilar

• Usually:
– Points are in a high-dimensional space

– Similarity is defined using a distance measure
• Euclidean, Cosine, Jaccard, edit distance, …
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Clustering is a Hard Problem!
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Why is it Hard?

• Clustering in two dimensions looks easy

• Clustering small amounts of data looks easy

• And in most cases, looks are not deceiving

• Many applications involve not 2, but 10 or
10,000 dimensions

• High-dimensional spaces look different:
– Almost all pairs of points are at about the same

distance
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Clustering Problem: SkyCat

• A catalog of 2 billion “sky objects” represents
objects by their radiation in 7 dimensions
(frequency bands)

• Problem: Cluster into similar objects, e.g.,
galaxies, nearby stars, quasars, etc.

• Sloan Digital Sky Survey is a newer, better
version of this
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Example: Clustering CDs

• Intuitively: Music divides into categories, and
customers prefer a few categories
– But what are categories really?

• Represent a CD by a set of customers who
bought it

• Similar CDs have similar sets of customers,
and vice-versa
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Example: Clustering CDs

Space of all CDs:
• Think of a space with one dim. for each customer

– Values in a dimension may be 0 or 1 only

– A CD is a point in this space is (x1, x2,…, xk),
• where xi = 1 iff the ith customer bought the CD
• Compare with boolean matrix: rows = customers; cols. = CDs

• For Amazon, the dimension is tens of millions
• Task: Find clusters of similar CDs
• An alternative: Use Minhash/LSH to get Jaccard

distance between “close” CDs
• Use that as input to clustering
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Example: Clustering Documents

Finding topics: 

• Represent a document by a vector(x1, x2,…, xk), 
where xi = 1 iff the ith word (in some order) 
appears in the document 
– It actually doesn’t matter if k is infinite; i.e., we 

don’t limit the set of words 

• Documents with similar sets of words may be 
about the same topic 
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Cosine, Jaccard, and Euclidean

• As with CDs we have a choice when we think
of documents as sets of words or shingles:

– Sets as vectors: measure similarity by the cosine
distance

– Sets as sets: measure similarity by the Jaccard
distance

– Sets as points: measure similarity by Euclidean
distance
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Overview: Methods of Clustering

• Hierarchical:
– Agglomerative (bottom up):

• Initially, each point is a cluster

• Repeatedly combine the two “nearest”
clusters into one

– Divisive (top down):
• Start with one cluster and recursively split it

• Point assignment:
– Maintain a set of clusters

– Points belong to “nearest” cluster
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Hierarchical Clustering

• Key operation:

Repeatedly combine
two nearest clusters

• Three important questions:

a) How do you represent a cluster of more than one
point?

b) How do you determine the “nearness” of clusters?

c) When to stop combining clusters?
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Hierarchical Clustering

• Key operation: Repeatedly combine two nearest
clusters

• (1) How to represent a cluster of many points?
– Key problem: As you build clusters, how do you

represent the location of each cluster, to tell which
pair of clusters is closest?

• Euclidean case: each cluster has a

centroid = average of its (data)points

• (2) How to determine “nearness” of clusters?
– Measure cluster distances by distances of centroids
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Hierarchical Clustering

• Recursive partitioning of a data set

18

1

2

3

4

5

1 2 3 4  5

1-clustering

2-clustering

3-clustering

4-clustering

5-clustering



And in the Non-Euclidean Case?

What about the Non-Euclidean case?
• The only “locations” we can talk about are the 

points themselves 
– i.e., there is no “average” of two points 

• Approach 1:
– (1) How to represent a cluster of many points?

clustroid = (data)point “closest” to other points 
– (2) How do you determine the “nearness” of clusters?

Treat clustroid as if it were centroid, when computing 
intercluster distances 
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“Closest” Point?
• (1) How to represent a cluster of many points?

clustroid = point “closest” to other points

• Possible meanings of “closest”:
– Smallest maximum distance to other points

– Smallest average distance to other points

– Smallest sum of squares of distances to other points
• For distance metric d clustroid c of cluster C is:
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Centroid is the avg. of all (data) points in 
the cluster. This means centroid is an 
“artificial” point. 
Clustroid is an existing (data) point that is 
“closest” to all other points in the cluster.
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Defining “Nearness” of Clusters

• (2) How do you determine the “nearness”
of clusters?
– Approach 2:

Intercluster distance = minimum of the distances between 
any two points, one from each cluster 

– Approach 3:

Pick a notion of “cohesion” of clusters, e.g., maximum 
distance from the clustroid

• Merge clusters whose union is most cohesive
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Cohesion

• Approach 3.1: Use the diameter of the merged
cluster = maximum distance between points in
the cluster

• Approach 3.2: Use the average distance between
points in the cluster

• Approach 3.3: Use a density-based approach
– Take the diameter or avg. distance, e.g., and divide by

the number of points in the cluster

– Perhaps raise the number of points to a power first,
e.g., square-root
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Implementation

• Naïve implementation of hierarchical clustering:

– At each step, compute pairwise distances between all
pairs of clusters, then merge

– O(N3)

• Careful implementation using priority queue can
reduce time to O(N2 log N)

– Still too expensive for really big datasets that do not
fit in memory
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K-means Clustering

• Fundamental algorithm in data analysis and
machine learning

• “By far the most popular clustering algorithm
used in scientific and industrial applications”
[Berkhin ’06+

• Identified as one of the top 10 algorithms in
data mining *Wu et al ’07+
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Problem Setting
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K-means Clustering: Example

K=4
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K-means Algorithm

• Start with k arbitrary centers {c1, c2, …, ck} 
(typically chosen uniformly at random from 
data points) 

• Performs an EM-type local search till 
convergence 
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Expectation Maximization (EM)

• An EM algorithm is an iterative method for
finding maximum likelihood or maximum a
posteriori estimates of parameters in statistical
models
– Expectation (E) step

• Create a function for the expectation of the log-
likelihood evaluated using the current estimate for the
parameters

– Maximization (M) step
• Compute parameters maximizing the expected log-likelihood

found on the E step
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EM in K-means

• E step

– Keep centers of clusters unchanged, assign points 
to closest clusters to minimizes the objective 
function 

• M step

– Keep the assignments of points unchanged, re-
estimate cluster centers to minimizes the 
objective function 

30

)(X C

)(X C



Getting the k Right

• How to select k?

– Try different k, looking at the change in the
average distance to centroid, as k increases

– Average falls rapidly until right k, then changes
little
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Example: Picking k
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Too few:
many long
distances
to centroid



Example: Picking k
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Just right:
distances
rather short



Example: Picking k
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Too many:
little 
improvement
in average
distance.



Pros & Cons

• Advantages
– Simplicity

– Scalability

• Disadvantages
– Takes many iterations to converge

– Very sensitive to initialization
• Random initialization can easily get two centers in the

same cluster

– Gets stuck in a local optimum
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K-means: Initialization
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K-means: Initialization

37



K-means: Initialization
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K-means: Initialization
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K-means++ *Arthur et al. ’07+

• Spreads out the centers 

• Choose first center, c1, uniformly at random from 
the data set 

• Repeat for 2 ≤ i ≤ k: 
– Choose ci to be equal to a data point x0 sampled from 

the distribution: 

• Theorem: O(log k)-approximation to optimum, 
right after initialization 
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K-means++ Initialization
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K-means++ Initialization
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K-means++ Initialization
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K-means++ Initialization

44



K-means++ Initialization
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What’s Wrong with K-means++? 

• Needs K passes over the data

• In large data applications, not only the data is
massive, but also K is typically large (e.g.,
easily 1000).

• Does not scale!
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Intuition of K-means||

• K-means++ samples one point per iteration
and updates its distribution

• What if we oversample by sampling each
point independently with a larger probability?

• Intuitively equivalent to updating the
distribution much less frequently

– Coarser sampling

• Turns out to be sufficient: K-means||
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K-means|| Initialization
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K-means|| Initialization
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K-means|| Initialization
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K-means|| Initialization
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K-means|| Initialization
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K-means|| *Bahmani et al. ’12+

• Choose l>1 *Think l=Θ(k)+

• Initialize C to an arbitrary set of points

• For R iterations do:
– Sample each point x in X independently with

probability

– Add all the sampled points to C

• Cluster the (weighted) points in C to find the
final k centers
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K-means, K-means++, and K-means||
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Theorem
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Experimental Results: Quality

• K-means|| much harder than K-means++ to
get confused with noisy outliers

Clustering Cost Right 
After Initialization 

Clustering Cost After 
Convergence

Random NA 22,000

K-means++ 430 65

K-means|| 16 14
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Experimental Results: Convergence

• K-means|| reduces number of iterations even
more than K-means++

Clustering Cost Right 
After Initialization 

Random 167

K-means++ 42

K-means|| 28

SPAM: 4,601 points in 58 dimensions 
K=50
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Experimental Results 

• K-means|| needs a small number of
intermediate centers

• Better than K-means++ as soon as ~K centers
chosen

Number of 
intermediate 
centers 

Time (In Minutes)

Random NA 489

K-means++ 1.9 1022

K-means|| 1.5 3604 87

KDDCUP1999: 4.8M points in 42 dimensions 
K=1000 59



In-class Practice

• Go to Practice

• Go to Solution
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Examples of k-means clustering 

 Clustering RGB vectors of pixels in images 

 Compression of image file: N x 24 bits 

 Store RGB values of cluster centers: K x 24 bits

 Store cluster index of each pixel: N x log K bits

4.2% 16.7% 8.3% 
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Limitations of K-means 

 Need to determine “K” via domain knowledge or heuristics (as 
stated before) 

 Only converge to local optimal 

 Need to try multiple starting points

 “Hard” assignment of each data point to a single cluster: 

 Each data point can only be assigned to 1 cluster (class)

 What about points that lie in between groups ? e.g. Jazz + Classical

 Overall results can be affected by a few Outliners 

Can we do better ? 
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Comparing to the K-means algorithm 
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Application: Using GMM for Image Segmentation 
Source:  

https://kittipatkampa.wordpress.com/2011/02/17/image-segmentation-using-gaussian-mixture-models/ 

Original Image Segmentation results using GMM with 3 components 

Input Features:  

x-y pixel locations & pixel lightness/color in L*a*b color

space

Output Results:

Each color represents a class ; The brightness

represents the posterior probability – darker pixels

represent high uncertainty of the posterior distribution.
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In-class Practice

• Given 8 points in the left 2D
space, suppose that the initial
seeds (centers of each cluster)
are A1, A4 and A7. Run the k-
means algorithm.

1. Using Euclidean distance show the
clusters after the first epoch and
the new centroids.

2. How many more iterations are
needed to converge? Draw the
result for each epoch.

3. If we apply K-means++ to the data
and choose A4 as the first seed,
which point will be chosen as the
second seed?
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