
Scalable Clustering

1

Motivation

• Large-scale and high
dimensional data

– Social networks

– Images

– Web documents

– …

• Understand the
structure of data

2

Motivation

• Traditional clustering methods (e.g., K-means)
– Takes many iterations to converge
– Very sensitive to initialization

3

Outline

• Introduction

• Hierarchical
Clustering

• K-means

• Scalable K-means

– K-means||

4

Outline

• Introduction

• Hierarchical
Clustering

• K-means

• Scalable K-means
– K-means||

5

The Problem of Clustering

• Given a set of points, with a notion of
distance between points, group the points
into some number of clusters, so that
– Members of a cluster are close/similar to each other

– Members of different clusters are dissimilar

• Usually:
– Points are in a high-dimensional space

– Similarity is defined using a distance measure
• Euclidean, Cosine, Jaccard, edit distance, …

6

Clustering is a Hard Problem!

7

Why is it Hard?

• Clustering in two dimensions looks easy

• Clustering small amounts of data looks easy

• And in most cases, looks are not deceiving

• Many applications involve not 2, but 10 or
10,000 dimensions

• High-dimensional spaces look different:
– Almost all pairs of points are at about the same

distance

8

Clustering Problem: SkyCat

• A catalog of 2 billion “sky objects” represents
objects by their radiation in 7 dimensions
(frequency bands)

• Problem: Cluster into similar objects, e.g.,
galaxies, nearby stars, quasars, etc.

• Sloan Digital Sky Survey is a newer, better
version of this

9

Example: Clustering CDs

• Intuitively: Music divides into categories, and
customers prefer a few categories
– But what are categories really?

• Represent a CD by a set of customers who
bought it

• Similar CDs have similar sets of customers,
and vice-versa

10

Example: Clustering CDs

Space of all CDs:
• Think of a space with one dim. for each customer

– Values in a dimension may be 0 or 1 only

– A CD is a point in this space is (x1, x2,…, xk),
• where xi = 1 iff the ith customer bought the CD
• Compare with boolean matrix: rows = customers; cols. = CDs

• For Amazon, the dimension is tens of millions
• Task: Find clusters of similar CDs
• An alternative: Use Minhash/LSH to get Jaccard

distance between “close” CDs
• Use that as input to clustering

11

Example: Clustering Documents

Finding topics:

• Represent a document by a vector(x1, x2,…, xk),
where xi = 1 iff the ith word (in some order)
appears in the document
– It actually doesn’t matter if k is infinite; i.e., we

don’t limit the set of words

• Documents with similar sets of words may be
about the same topic

12

Cosine, Jaccard, and Euclidean

• As with CDs we have a choice when we think
of documents as sets of words or shingles:

– Sets as vectors: measure similarity by the cosine
distance

– Sets as sets: measure similarity by the Jaccard
distance

– Sets as points: measure similarity by Euclidean
distance

13

Overview: Methods of Clustering

• Hierarchical:
– Agglomerative (bottom up):

• Initially, each point is a cluster

• Repeatedly combine the two “nearest”
clusters into one

– Divisive (top down):
• Start with one cluster and recursively split it

• Point assignment:
– Maintain a set of clusters

– Points belong to “nearest” cluster

14

Outline

• Introduction

• Hierarchical
Clustering

• K-means

• Scalable K-means

– K-means||

15

Hierarchical Clustering

• Key operation:

Repeatedly combine
two nearest clusters

• Three important questions:

a) How do you represent a cluster of more than one
point?

b) How do you determine the “nearness” of clusters?

c) When to stop combining clusters?

16

Hierarchical Clustering

• Key operation: Repeatedly combine two nearest
clusters

• (1) How to represent a cluster of many points?
– Key problem: As you build clusters, how do you

represent the location of each cluster, to tell which
pair of clusters is closest?

• Euclidean case: each cluster has a

centroid = average of its (data)points

• (2) How to determine “nearness” of clusters?
– Measure cluster distances by distances of centroids

17

Hierarchical Clustering

• Recursive partitioning of a data set

18

1

2

3

4

5

1 2 3 4 5

1-clustering

2-clustering

3-clustering

4-clustering

5-clustering

And in the Non-Euclidean Case?

What about the Non-Euclidean case?
• The only “locations” we can talk about are the

points themselves
– i.e., there is no “average” of two points

• Approach 1:
– (1) How to represent a cluster of many points?

clustroid = (data)point “closest” to other points
– (2) How do you determine the “nearness” of clusters?

Treat clustroid as if it were centroid, when computing
intercluster distances

19

“Closest” Point?
• (1) How to represent a cluster of many points?

clustroid = point “closest” to other points

• Possible meanings of “closest”:
– Smallest maximum distance to other points

– Smallest average distance to other points

– Smallest sum of squares of distances to other points
• For distance metric d clustroid c of cluster C is:

20

Centroid is the avg. of all (data) points in
the cluster. This means centroid is an
“artificial” point.
Clustroid is an existing (data) point that is
“closest” to all other points in the cluster.

Data point

A cluster on 3
data points

Centroid

Clustroid

X

Defining “Nearness” of Clusters

• (2) How do you determine the “nearness”
of clusters?
– Approach 2:

Intercluster distance = minimum of the distances between
any two points, one from each cluster

– Approach 3:

Pick a notion of “cohesion” of clusters, e.g., maximum
distance from the clustroid

• Merge clusters whose union is most cohesive

21

Cohesion

• Approach 3.1: Use the diameter of the merged
cluster = maximum distance between points in
the cluster

• Approach 3.2: Use the average distance between
points in the cluster

• Approach 3.3: Use a density-based approach
– Take the diameter or avg. distance, e.g., and divide by

the number of points in the cluster

– Perhaps raise the number of points to a power first,
e.g., square-root

22

Implementation

• Naïve implementation of hierarchical clustering:

– At each step, compute pairwise distances between all
pairs of clusters, then merge

– O(N3)

• Careful implementation using priority queue can
reduce time to O(N2 log N)

– Still too expensive for really big datasets that do not
fit in memory

23

Outline

• Introduction

• Hierarchical
Clustering

• K-means

• Scalable K-means

– K-means||

24

K-means Clustering

• Fundamental algorithm in data analysis and
machine learning

• “By far the most popular clustering algorithm
used in scientific and industrial applications”
[Berkhin ’06+

• Identified as one of the top 10 algorithms in
data mining *Wu et al ’07+

25

Problem Setting

26

K-means Clustering: Example

K=4

27

K-means Algorithm

• Start with k arbitrary centers {c1, c2, …, ck}
(typically chosen uniformly at random from
data points)

• Performs an EM-type local search till
convergence

28

Expectation Maximization (EM)

• An EM algorithm is an iterative method for
finding maximum likelihood or maximum a
posteriori estimates of parameters in statistical
models
– Expectation (E) step

• Create a function for the expectation of the log-
likelihood evaluated using the current estimate for the
parameters

– Maximization (M) step
• Compute parameters maximizing the expected log-likelihood

found on the E step

29

EM in K-means

• E step

– Keep centers of clusters unchanged, assign points
to closest clusters to minimizes the objective
function

• M step

– Keep the assignments of points unchanged, re-
estimate cluster centers to minimizes the
objective function

30

)(X C

)(X C

Getting the k Right

• How to select k?

– Try different k, looking at the change in the
average distance to centroid, as k increases

– Average falls rapidly until right k, then changes
little

31

Example: Picking k

32

Too few:
many long
distances
to centroid

Example: Picking k

33

Just right:
distances
rather short

Example: Picking k

34

Too many:
little
improvement
in average
distance.

Pros & Cons

• Advantages
– Simplicity

– Scalability

• Disadvantages
– Takes many iterations to converge

– Very sensitive to initialization
• Random initialization can easily get two centers in the

same cluster

– Gets stuck in a local optimum

35

K-means: Initialization

36

K-means: Initialization

37

K-means: Initialization

38

K-means: Initialization

39

K-means++ *Arthur et al. ’07+

• Spreads out the centers

• Choose first center, c1, uniformly at random from
the data set

• Repeat for 2 ≤ i ≤ k:
– Choose ci to be equal to a data point x0 sampled from

the distribution:

• Theorem: O(log k)-approximation to optimum,
right after initialization

40

K-means++ Initialization

41

K-means++ Initialization

42

K-means++ Initialization

43

K-means++ Initialization

44

K-means++ Initialization

45

What’s Wrong with K-means++?

• Needs K passes over the data

• In large data applications, not only the data is
massive, but also K is typically large (e.g.,
easily 1000).

• Does not scale!

46

Outline

• Introduction

• Hierarchical
Clustering

• K-means

• Scalable K-means

– K-means||

47

Intuition of K-means||

• K-means++ samples one point per iteration
and updates its distribution

• What if we oversample by sampling each
point independently with a larger probability?

• Intuitively equivalent to updating the
distribution much less frequently

– Coarser sampling

• Turns out to be sufficient: K-means||

48

K-means|| Initialization

49

K-means|| Initialization

50

K-means|| Initialization

51

K-means|| Initialization

52

K-means|| Initialization

53

K-means|| *Bahmani et al. ’12+

• Choose l>1 *Think l=Θ(k)+

• Initialize C to an arbitrary set of points

• For R iterations do:
– Sample each point x in X independently with

probability

– Add all the sampled points to C

• Cluster the (weighted) points in C to find the
final k centers

54

K-means, K-means++, and K-means||

55

Theorem

56

Experimental Results: Quality

• K-means|| much harder than K-means++ to
get confused with noisy outliers

Clustering Cost Right
After Initialization

Clustering Cost After
Convergence

Random NA 22,000

K-means++ 430 65

K-means|| 16 14

57

Experimental Results: Convergence

• K-means|| reduces number of iterations even
more than K-means++

Clustering Cost Right
After Initialization

Random 167

K-means++ 42

K-means|| 28

SPAM: 4,601 points in 58 dimensions
K=50

58

Experimental Results

• K-means|| needs a small number of
intermediate centers

• Better than K-means++ as soon as ~K centers
chosen

Number of
intermediate
centers

Time (In Minutes)

Random NA 489

K-means++ 1.9 1022

K-means|| 1.5 3604 87

KDDCUP1999: 4.8M points in 42 dimensions
K=1000 59

In-class Practice

• Go to Practice

• Go to Solution

60

 61

Examples of k-means clustering

 Clustering RGB vectors of pixels in images

 Compression of image file: N x 24 bits

 Store RGB values of cluster centers: K x 24 bits

 Store cluster index of each pixel: N x log K bits

4.2% 16.7% 8.3%

 62

Limitations of K-means

 Need to determine “K” via domain knowledge or heuristics (as
stated before)

 Only converge to local optimal

 Need to try multiple starting points

 “Hard” assignment of each data point to a single cluster:

 Each data point can only be assigned to 1 cluster (class)

 What about points that lie in between groups ? e.g. Jazz + Classical

 Overall results can be affected by a few Outliners

Can we do better ?

 63

Comparing to the K-means algorithm

 64

Application: Using GMM for Image Segmentation
Source:

https://kittipatkampa.wordpress.com/2011/02/17/image-segmentation-using-gaussian-mixture-models/

Original Image Segmentation results using GMM with 3 components

Input Features:

x-y pixel locations & pixel lightness/color in L*a*b color

space

Output Results:

Each color represents a class ; The brightness

represents the posterior probability – darker pixels

represent high uncertainty of the posterior distribution.

References

• Bahmani, Bahman, et al. "Scalable k means++." Proceedings
of the VLDB Endowment 5.7 (2012): 622-633.

• Arthur, David, and Sergei Vassilvitskii. "k-means++: The
advantages of careful seeding." Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics,
2007.

• Wu, Xindong, et al. "Top 10 algorithms in data
mining." Knowledge and Information Systems 14.1 (2008):
1-37.

• Berkhin, Pavel. "A survey of clustering data mining
techniques." Grouping multidimensional data. Springer
Berlin Heidelberg, 2006. 25-71.

65

References

• G. Scott and H. Longuet-Higgins. An algorithm for associating the
features of two patterns. In Proc. Royal Society London, volume
B244, pages 21-26, 1991.

• A. Ng, M. Jordan, Y. Weiss. On Spectral clustering: analysis and
algorithm. In Advances in Neural Information Processing Systems
(2001), pp. 849-856

• Pietro Perona and William Freeman. A factorization approach to
grouping. In ECCV'98, pp. 655-670.

• Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image
Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8 (August
2000), 888-905.

• Wing Cheong Lau, Web-scale Information Analytics, 2016.

66

In-class Practice

• Given 8 points in the left 2D
space, suppose that the initial
seeds (centers of each cluster)
are A1, A4 and A7. Run the k-
means algorithm.

1. Using Euclidean distance show the
clusters after the first epoch and
the new centroids.

2. How many more iterations are
needed to converge? Draw the
result for each epoch.

3. If we apply K-means++ to the data
and choose A4 as the first seed,
which point will be chosen as the
second seed?

67

Go Back

