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Motivation

• Introduce the widely used classification tool: 
Support Vector Machine (SVM)

• Understand the model and parameter 
estimation method in terms of big data
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Motivation
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Motivation

What if there are millions of 
photos, how to make the SVM 
training scalable? 4



SVMs: History

• SVMs introduced in COLT-92 by Boser, Guyon
& Vapnik. Became rather popular since.

• Theoretically well motivated algorithm: 
developed from Statistical Learning Theory 
(Vapnik & Chervonenkis) since the 60s.

• Empirically good performance: successful 
applications in many fields (bioinformatics, 
text, image recognition, . . . )
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SVMs: History

• Centralized website: www.kernel-
machines.org.

• Several textbooks, e.g. “An introduction to 
Support Vector Machines” by Cristianini and 
Shawe-Taylor is one.

• A large and diverse community work on them: 
from machine learning, optimization, 
statistics, neural networks, functional analysis, 
etc.
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Linear SVMs

• Data
– Training examples:
– Each
– Want to find a hyperplane

to separate “+” from “-”

• What’s the best hyperplane
defined by      ?
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Largest Margin

• Distance from the separating 
hyperplance corresponds to 
the “confidence” of 
prediction

• Example: We have more
confidence to say A and B 
belong to “+” than C
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Largest Margin

• Support Vectors: 
Examples closest to 
the hyperplane

• Margin : width of 
separation between 
support vectors of 
classes.
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Largest Margin

• Distance from example to 
the separator is :

• Proof: r

ρx

x′

w
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Largest Margin

• Assume that all data is at least distance 1 from 
the hyperplane, then the following constraints 
follow for a training set

• For support vectors, the inequality becomes 
an equality

• Recall that 
• Margin is: 
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Linear SVMs

• Note that we assume that all data points are 
linearly separated by the hyperplane.

• The margin is invariant to scaling of 
parameters. 
– i.e. by changing w, b to 5w, 5b, the margin doesn’t 

change
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Linear SVMs

• Maximize the margin
– Good according to intuition, theory (VC 

dimension) & practice

• The problem of linear SVMs is formulated as:

• An equivalent form is: 
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Non-Linear Separable SVMs

• In reality, training samples are 
usually not linearly separable. 

• Soft Margin Classification
– Idea: allow errors but introduce 

slack variable       to penalize 
errors

– Still try to minimize training set 
errors, and to place hyperplane
“far” from each class (large 
margin) 
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Soft Margin Classification

• The problem becomes:

– Minimize         plus the number of training 
mistakes

– Set C using cross validation
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Soft Margin Classification

• If point is on the 
wrong side of the margin 
then get penalty 

• Thus all mistakes are not 
equally bad! 

20



Slack Penalty C

• What is the role of penalty 
C: 
– : can set      to 

anything, then w=0 
(basically ignore the data)

– : Only want w,b to 
separate the data

21



Soft Margin Classification

• SVM in the “natural” form

• SVM uses “Hinge Loss”:

Margin
Empirical loss LRegularization 

Parameter
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Non-linear Separable SVMs

• Linear classifiers aren’t complex enough 
sometimes. 
– Map data into a richer feature space including 

non-linear features
– Then construct a hyperplane in that space so all 

other equations are the same
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Non-linear Separable SVMs 

• Formally, process the data with:

• Then learn the map from          to  
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Example: Polynomial Mapping
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Example: MNIST

• Data: 60,000 training examples, 10000 test 
examples, 28x28

• Linear SVM has around 8.5% test error. 
Polynomial SVM has around 1% test error.
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MINST Results

Choosing a good mapping (encoding prior knowledge + 
getting right complexity of function class) for your problem 
improves results.
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SVM: How to Estimate w, b

• We take the soft margin classification for 
example:

• Standard way: Use a solver! 
– Solver: software for finding solutions to 

“common” optimization problems, e.g. LIBSVM 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

• Problems: Solvers are inefficient for big data!
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SVM: How to Estimate w, b

• Want to estimate w,b !
• Alternative approach:

– Want to minimize f(w,b)

– How to minimize convex functions f(z)
– Use gradient descent: 
– Iterate: 
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SVM: How to Estimate w?

• Want to minimize f(w,b):

• Compute the gradient 
Empirical loss L
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SVM: How to Estimate w?

• Gradient descent:

• Problem:
– Computing        takes O(n) time

• n … size of the training dataset
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SVM: How to Estimate w?

• Stochastic Gradient Descent
– Instead of evaluating gradient over all examples, 

evaluate it for each individual training example

• Stochastic gradient descent:

37



Optimization “Accuracy”
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SGD vs. Batch Conjugate Gradient

• SGD on full dataset vs. Batch Conjugate
– Gradient on a sample of n training examples

41



Practical Considerations

• Need to choose learning rate

• Leon suggests: 
– Choose     so that the expected initial updates are 

comparable with the expected size of the weights
– Choose   :

• Select a small subsample
• Try various rates    (e.g., 10,1,0.1,0.01,…)
• Pick the one that most reduces the cost
• Use    for next 100k iterations on the full dataset
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Practical Considerations

• Sparse Linear SVM:
– Feature vector     is sparse (contains many zeros)

• Do not do:
• But represent      as a sparse vector

– Can we do the SGD update more efficiently?

– Approximated in 2 steps: 
Cheap:      is sparse and so few 
coordinates j of w will be updates
Expensive: w is not sparse, all 
coordinates need to be updated
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Practical Considerations

• Solution 1:
– Represent vector w as the product of scalar s

and the vector v
– Then the update procedure is:

• 1)
• 2)

• Solution 2:
– Perform only step 1) for each training example
– Perform step 2) with lower frequency and 

higher 
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Practical Considerations

• Stopping criteria:
How many iterations of SGD?
– Early stopping with cross validation

• Create validation set
• Monitor cost function on the validation set
• Stop when loss stops decreasing

45



Practical Considerations

• Stopping criteria:
How many iterations of SGD?
– Early Stopping

• Extract two disjoint subsamples A and B of training data
• Train on A, stop by validating on B
• Number of epochs is an estimate of k
• Train for k epochs on the full dataset
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What about Multiple Classes?

• Idea 1:
– One against all
Learn 3 classifiers

• + vs. {o,-}
• - vs. {o,+}
• o vs. {+,-}

Obtain:
– Return class c
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What about Multiple Classes?

• Idea 2:
– Learn 3 sets of weights simultaneously
– Want the correct class to have highest margin:
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Multiclass SVM

• Optimization problem:

– To obtain parameters          for each class c, we can 
use similar techniques as for 2 class SVM

• SVM is widely perceived a very powerful 
learning algorithm 
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In-class Practice

• Consider building an SVM over the (very little) 
data set shown in above figure, compute the e 
SVM decision boundary. 

(2,3)
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