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Content-based Systems &
Collaborative Filtering
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Example: Recommender Systems

= iR 2F
o Rl H o
5] ot : ]

o Customer X o Customer Y

e Does search on Metallica

e Recommender system
suggests Megadeth from
data collected about
customer X

e Buys Metallica CD
e Buys Megadeth CD
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Recommendations

Examples:

amazon.com

ﬂ StumbleUpon

.. del.icio.us ETFLL

movielens
helping you find the right movies

lost-fm Google

News

(11 Tube

LiIVE
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The Long Tall

6,100

AMAZON.CON W  NETFLIX |

TGTAL INVENTORY- TOTAL INVENTO&Y: TOTAL VENTORY:
735,000 s0mgs : 2.3 millicn books : 5,000 OV Ds More than 40,000 documentaries have
H H been released, according to the Internet
- : Movie Database. Of those, Amazon.com carries
40 percent, Netflix stocks 3 percent, and the
: : average Blockbuster just .2 percent.
trpiaad : iieal tyisal
ek W : Bewn & Noble  © Bl smsor
Wi l“”llﬂlbg w-r:llﬂ.lﬂlil-lh e LN TR
Netflix Local Blockbuster
2,000 = OBSCURE PRODUCTS YOU CAN'T GET ANYWHERE BUT OMLINE
Songs
<. available at TOTAL SALES
. both Wal-Mart

‘and Rhapsody

1,000
Songs

available only
on Rhapsody

Average number of plays per month on Rhapsody

0 39,000 100,000 200,000 500,000
Titles ranked by popularity

Sources: Erik Brynjolfsson and Jeffray Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetwarks
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Physical vs. Online

Prodin ithreshold

for physical stares
ik Tower Recands)

Profit ihroshold for stores
with no retail owerhead
(like Amazon.com]

Profit ihreshold for stores
with mo physical goods
like Rhapsody)

Just as lowaer prices can entice
consumers down the Long Tail,
recommendation engines drive
them to obscure content they
might not find otherwise.

Amazon sales rank

Read http://www.wired.com/wired/archive/12.10/tail.html to learn morR%éhYsg



Formal Model

o X = set of

0S = set of

oUtility function u: XxS -2 R

e R = set of ratings
e R Is a totally ordered set
e e.g., 0-5 stars, real number in [0,1]
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Utility Matrix

Avatar LOTR Matrix Pirates

Alice 1 02
2o 0.5 0.3
Carol 02 1

David 04
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Key Problems

o (1) Gathering “known” ratings for matrix

e How to collect the data in the utility matrix

o (2) Extrapolate unknown ratings from the
known ones

e Mainly interested in high unknown ratings

* We are not interested in knowing what you don't like
but what you like

o (3) Evaluating extrapolation methods

e How to measure success/performance of
recommendation methods

RECSYS 13



(1) Gathering Ratings

o Explicit
e Ask people to rate items

e Doesn’t work well in practice — people
can’'t be bothered

o Implicit
e Learn ratings from user actions

* E.g., purchase implies high rating
e What about low ratings?
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(2) Extrapolating Utilities

o Key problem: matrix U is sparse

e Most people have not rated most items
e Cold start:

* New items have no ratings
* New users have no history

o Three approaches to recommender systems:
e 1) Content-based
e 2) Collaborative Filtering

 Memory-based
» User-based Collaborative Filtering
* |tem-based Collaborative Filtering

» Latent factor based

RECSYS 15



Content-based
Recommender Systems



Content-based Recommendations

o Main idea: Recommend items to customer x similar to
previous items rated highly by x

Example:

o Movie recommendations

e Recommend movies with same actor(s),
director, genre, ...

o Websites, blogs, news

e Recommend other sites with “similar” content
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Plan of Action

ltem profiles
likes

> @ A

build
recommend

. ‘ match Red

< | Circles

. . Triangles

User profile
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ltem Profiles

o For each item, create an item profile

o Profile is a set (vector) of features

e Movies: author, title, actor, director,...
e Text: Set of “important” words in document

o How to pick important features?

e Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)

e Term ... Feature
e Document ... ltem
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Sidenote: TF-IDF

fij = frequency of term (feature) I in doc (item) |

Note: we normalize TF
TEF. . — fz‘j to discount for “longer”
tJ MaXg fk; documents

n. = number of docs that mention term |

N = total number of docs

IDF; = log ;"

Doc profile = set of words with highest TF-IDF scores,
together with their scores
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User Profiles and Prediction

o User profile possibilities:

e \Weighted average of rated item profiles

e Variation: weight by difference from average
rating for item

o ...
o Prediction heuristic:

e Given user profile x and item profile I, estimate
x-i

|1l |-[12]]

u(x,i) = cos(x, i) =

RECSYS 21



Pros. Content-based Approach

o +: No need for data on other users

e No cold-start or sparsity problems

o +: Able to recommend to users with
unique tastes

o +: Able to recommend new & unpopular items

e No first-rater problem

o +: Able to provide explanations

e Can provide explanations of recommended items by listing content-
features that caused an item to be recommended
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Cons: Content-based Approach

o —: Finding the appropriate features is hard
e E.g., images, movies, music
o —: Overspecialization

e Never recommends items outside user’s
content profile

e People might have multiple interests
e Unable to exploit quality judgments of other users

o — Recommendations for new users

e How to build a user profile?
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Collaborative Filtering
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Collaborative filtering

o Recommend items based on past transactions of users
o Analyze relations between users and/or items

o Specific data characteristics are irrelevant

e Domain-free: user/item attributes are not necessary
e Can identify elusive aspects

amazoncom

Customers who bought items in your Recent History also bought:

( Add to Cart | [ Add to Wish List | ( Add to Cart | | Add to Wish List | ( Add to Cart | [ Add to Wish List |

RECSYS 25


http://www.amazon.com/ref=topnav_gw_gw/105-4928948-8451605

Collaborative Filtering (CF)

Memory-based Model-based
(e.g., k-nearest neighbors) (e.g., matrix factorization)

Serious

Braveheart

A

Lethal Weapon
Semse and
Geared Sensibility [Ocearis 1] | g Geared

fernales

The Color Purple

The Princess
Diaries

Independean
Day

Escapist

Figure 1. The user-oriented neighborhood method. Joe likes the three Figure 2. A simplified illustration of the latent factor approach, which

movies on the left. To make a prediction for him, the system finds similar
users who also llked those movies, and then determines which other movies characterizes both users and movies using two axes—male versus female

they liked. In this case, all three liked Saving Private Ryan, so that is the first and serlous versus escapist.
recommendation. Two of them liked Dune, so that is next, and so on.

http://research.yahoo.com/pub/2859
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1.

2.

Example of Memory-based Collaborative Filtering:
User-User Collaborative Filtering

Consider user X

Find set N of
other users
whose ratings
are “similar” to
X’s ratings, e.g.
using K-nearest
neighbors (KNN)

Recommend
items to x Users Clusters Items
based on the

weighted ratings

of items by users

iIn N RECSYS 27



ro = [* * ***]
Similar Users r; e e ]
o Letr, be the vector of user x’s ratings
o Jaccard similarity measure
r, fy as sets:
e Problem: Ignores the value of the rating rﬁg, ;1, ii
r, =14, 9o,

o Cosine similarity measure

ry, Iy @as points:
r,={1,0,0, 1, 3}
(IR r={L 0,2 2 0}

e Problem: Treats missing ratings as “negative”

rx 'ry

O Sim(X, y) — COS(rX, ry) =

o Pearson correlation coefficient

> (rzi—72)(rys — 7y)

i€y K(’ ry ... avg.
x,Y) = rating of X, y
2 (rei—72)? ) (g —73)?
i€lzy iClzy

where Ly is the set of items rated by both user x and user y. RECSYS 28



Cosine sim;

Similarity Metric

HP1 HP2 HP3 TW BSW1 B5W2 B5SW3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

o Intuitively we want: sim(A, B) >sim(A, C)
o Jaccard similarity: 1/5 < 2/4
o Cosine similarity: 0.386 > 0.322

e Considers missing ratings as “negative”
e Solution: subtract the (row) mean

HP1 HP2 HP3 TW swi sw2 swi SIMABVS.AC:

2/3 5/3 —7/3 0.092 > -0.559
1/3 1/3 -2/3

iy Notice cosine sim. Is
, —5/3 13 4/3 correlation when

data is Centeggg%tzg

SQW



Rating Predictions
o Let r, be the vector of user x’s ratings

o Let N be the set of k users most similar to x
who have rated item |

o Prediction for item 1 of user Xx:

1
® Tyi =7 Lyen Tyi
Shorthand:

o7, = ZyeN Sxy Tyi Sxy = sim(x,y)

ZyeN Sxy
e Other options?

o Many other tricks possible...
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Another type of Memory-based Collaborative Filtering: :
ltem-ltem based Collaborative Filtering

o So far: User-user collaborative filtering

o Another view: ltem-item

e For item i, find other similar items

e Estimate rating for item | based
on the target user’s ratings on items similar to item |

e Can use same similarity metrics and
prediction functions as in user-user model

B ZjeN(i;x) Sij Ty

Xi Z S. s;j... similarity of items i and |
jeN(i;x) U ry---rating of user x on item j
N(i;X)... set items rated by x similar to |

RECSYS 31




movies

ltem-ltem CF (|N|=2)

3 4 5
3
5 4

1 2
4 5
4 3 4
3 3

- unknown rating

users
6 7 8 9 10 11 12
3) 3) 4
4 2 1 3
3 4 3 5
4 2
2 2 5
2 4

- rating between 1to 5
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movies

ltem-Item CF (|N|=2)

users

2 3 4 5 6 ¢ 8 9 10 11 12

5 4 4 2 1 3

4 1 2 3 4 3 5

2 4 5 4 2
4 3 4 2 2 5
3 3 2 4

. - estimate rating of movie 1 by user 5
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movies

Io

ltem-Item CF (|N|=2)

users

2 3 4 5 6 7 8 9 10 11
3 .5 5 4

5 4 4 2 1

4 1 . 3 4 3 5
2 4 5 4 2
4 3 4 2 2

2 4

Neighbor selection:
|ldentify movies similar to
movie 1, rated by user 5

0.59

Here we use Pearson correlation as similarity:
1) Subtract mean rating m; from each movie i

m, = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0,0, 1.4,0, 0, 1.4, 0, 0.4, 0]
2) Compute cosine similarities between FOWSECSYS 34



movies

Io

ltem-Item CF (|N|=2)

users
1 2 3 4 5 6 7 8 9 10 11
1 3 .5 5 4
5 4 4 2 1
2 4 1 . 3 4 3 5
2 4 5 4 2

Compute similarity weights:
S,13=0.41, s,5=0.59
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movies

[p)

ltem-Item CF (|N|=2)

users
1 2 3 4 5 6 7 8
1 3 .5
5 4 4
2 4 1 . 3
2 4 5 4
4 3 4 2
1 3 . 2

Predict by taking weighted average:

r,s=(0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

9

10 11 12
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Common Practice for
ltem-ltem Collaborative Filtering

o Define similarity s;; of items | and |

o Select K nearest neighbors (KNN): N(i; x)

e Set of Items most similar to item i, that were rated by x

o Estimate rating r,; as the weighted average:

A ZjeN(i;x) Sij Ty

rxi
ZjeN(i;x) Sij

N(i;x) = set of items similar to item | that were rated by X
s;; = similarity of items I and |
r= rating of user x on item |
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ltem-ltem vs. User-User

Avatar LOTR Matrix Pirates

aee 1 0.8

0.5 0.3
o 0.9 1 0.8
1 04

In practice, it has been observed that item-item
often works better than user-user

Why? Items are simpler, users have multiple tastes
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O

O

O

O

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

e No feature selection needed
- Cold Start:

e Need enough users in the system to find a match
- Sparsity:

e The user/ratings matrix is sparse
e Hard to find users that have rated the same items

- First rater:

e Cannot recommend an item that has not been
previously rated

e New items, Esoteric items
- Popularity bias:

e Cannot recommend items to someone with
unigue taste

e Tends to recommend popular items

RECSYS 39



Hybrid Methods

o Implement two or more different recommenders and
combine predictions

e Perhaps using a linear model

o Add content-based methods to
collaborative filtering

e Item profiles for new item problem
e Demographics to deal with new user problem
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Remarks & Practical Tips

- Evaluation
- Error metrics

- Complexity / Speed

RECSYS 41



users

Evaluation

movies
‘ 1 3 4
3 5

4 5
3
3

2 2
1
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Evaluation

movies )
| 1 3 4
3 5
4 5
users c
3
2 ?
?
2 1
?

Test Data Set

/
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Evaluating Predictions
o Compare predictions with known ratings
e Root-mean-square error (RMSE)
« where is predicted, is the true rating of x on i
e Precision at top 10:

* % of those in top 10
e Rank Correlation:
« Spearman’s correlation between system’s and user’'s complete
rankings
o Another approach: 0/1 model
e Coverage:

* Number of items/users for which system can make predictions
e Precision =TP /(TP + FP)
e Accuracy = (TP+TN) /(TP + FP + TN + FN)
e Receiver Operating characteristic (ROC) Curve
Y-axis: True Positive Rates (TPR) ; X-axis False Positive Rates (FPR)
* TPR (aka Recall) =TP /P =TP/(TP+FN) ;
* FPR =FP/N=FP/(FP + TN)
 See https://en.wikipedia.org/wiki/Precision and recall RECSYS 44



Problems with Error Measures

o Narrow focus on accuracy sometimes
misses the point

e Prediction Diversity
e Prediction Context
e Order of predictions

o In practice, we care only to predict high ratings:

e RMSE might penalize a method that does well
for high ratings and badly for others
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Collaborative Filtering: Complexity

o Expensive step is finding k most similar customers: O(|X|)

e Recall that X = set of customers in the system
o Too expensive to do at runtime
e Could pre-compute using clustering as approx.

o Naive pre-computation takes time O(N :|C|)

e |C| =# of clusters =k in the k-means ; N = # of data points ;

o We already know how to do this!

e Near-neighbor search in high dimensions (LSH)
e Clustering
e Dimensionality reduction
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Tip: Add Data

o Leverage all the data

e Don’t try to reduce data size in an
effort to make fancy algorithms work

e Simple methods on large data do best

o Add more data
e e.¢., add IMDB data on genres

o More data beats better algorithms
http://anand.typepad.com/datawocky/2008/03/more-data-usual .html
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Recommender Systems:
Latent Factor Models



Collaborative Filtering via
Latent Factor Models (e.g., SVD)

The Col Serious Braveheart
e Color
Amadeus
Purple 4
R
@ Lethal
Sense and Weapon
Geared sensibility Dcean’s 11 m Geared
towards m N “towards
females ll males
The Lign King
'The?hjncess Independence'7
Diaries Day
v Dumb and
Dumber

Funny
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Factor vector 2
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Factor vector 1 Koren, Bell, Volinksy, IEEE Computer, 2009
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The Netflix Utility Matrix R

480,000 users

Matrlx R 1 : 1 3

4
3 5 5
4 5 5
17,700 .
movies 3
2 2 2
5
1 1
3
1
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Utility Matrix R: Evaluation

480,000 users

P o
<« »

Matrix R

17,700
movies

Training Data Set Test Data Set

True rating of
item i

Predicted rating RECSYS 52




Latent Factor Models

o “SVD” on Netflix data: R=Q - PT SVD:A=U VI

f factors

users

m--- N ER N ENEN N ERERT
~ migE DS ENEIEREN e EA e

ﬂ

sJ010®} |}

1 S EarEn 2146 Ji7]2elo ]34 87
T
47 ENEREN P

R Q
o For now let's assume we can approximate the rating matrix
R as a product of “thin” Q - PT

e R has missing entries but let’s ignore that for now!

- Basically, we will want the reconstruction error to be small on
known ratings and we don’t care about the values on the

missing ones
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Ratings as Products of Factors

o How to estimate the missing rating of
user x for item 1?

vi = q; * Dx
= zqif'pr
/o
g; =rowiof Q

p, = column x of PT

uUSers

N N BN N N N EN EN EN R ER
I N 0 N N B R B
EN BN AN EN N N E R N B

2.1

f factors Q
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Ratings as Products of Factors

o How to estimate the missing rating of
user x for item 1?

S T
users xi = qi" Px
1—3r—5—15—4r‘
s 2 Az s - E .
g 2 4r 1.2’-j 3! }73 sr ~ T qlf pr
D - —— < ~
.4:.—?_2.4{-5[ —1_4.2[ f
4 4 2 5 '
| | - g; =rowiof Q
o n p, = column x of PT
users

I N N o N N KN EN R ER
I N 5 N N B R B
ENENENER

f factors

EEEENEEENERENE
pT

f factors Q
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Ratings as Products of Factors

o How to estimate the missing rating of
user x for item 1?

S T
users xi = 4" Px
1"3——5—15—4r‘
M54 4™ 2 1 3 _ .
g 2 4_1ﬁ 3 | }73 5r ~ T z qlf pr
:'q:')—z 4™ 5| 114——2[‘ ~
| | | - f
,-4 ‘ | g; =rowiof Q
S =[5 £ p, = column x of PT
users
. NN ER R N A
 ENENENEN s SN A A ENEN
 EN NN o N RN EN R EN

PT
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Latent Factor Models

Serious Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Factor 1Geared
towards* “towards
females males
The Lion King
[Q\
The Princess % Independence
Diaries S| Day
v Dumb and
Dumber

Funny
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Latent Factor Models

The Col Seriouslr Braveheart
e Color
Amadeus
Purple 4
RN
Lethal
Sense and @ Weapon
Sensibility :
Geared ODcean’s 11 m_ Factor 15€ared
towards m % towards
S males

females . i e

The Lion King

The Princess
Diaries

Independence | G

Day
v Dumb and

Dumber
RECSYS 58
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Recap: SVD

A
( \
o Remember SVD: ( .
e A: Input data matrix y VI
e U: Left singular vecs s A ~ me
e V: Right singular vecs
e X: Singular values . .

e SVD gives minimum reconstruction error (SSE!)

2
min Y. :(4;; — [USVT];;
uv.x U( Y U) The sum goes over all entries.

A But our R has missing entries!

o So in our case, “SVD” on Netflix data: R=Q - PT
A _ . T
oA=R, Q=U, PT=3x VT Yyxi = qi Px

e But, we are not done yet! R has missing entries!
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Latent Factor Models

USEers f factors

users

11 -2 |3 |5 |2 |-5 |8 |-4]3 [14 |24

: NN
AaRERRRPE T - | |
intRatipalinod ||
— [ —
s e ™ s CEREEER
| =

ﬂ-----
21 |4l a7 loalo [l ] |7

istipatigatighs 1o P!

o SVD isn't defined when entries are missing!

o Use specialized methods to find P, Q
® man(lx)ER(rXL p.;l(; 2

e Note:

«  We don't require cols of P, Q to be orthogonal/unit length
« P, Q map users/movies to a latent space
*  The most popular model among Netflix contestants
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Dealing with Missing Entries

o Want to minimize SSE for unseen test data

o Ildea: Minimize SSE on training data

e Want large f (# of factors) to capture all the signals
e But, SSE on test data begins to rise forf > 2

o Regularization is needed to avoid Overfitting !

e Allow rich model where there are sufficient data
e Shrink aggressively where data are scarce

A...

trarnrng

SInf Y al

w w
Wwhsops
(&)]

w N
=

error”
regularization parameter

v
“length”
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Recommendations via Latent Factor Models
(e.g., SVD++ by the [Bellkor Team])

The Col serious Braveheart
e Color
Amadeus
Purple 4
R
Sense and @
Geared Sensibility (bcean’s 11 Geared
towards * towards
females 9 males
A7
The Lion Dumb and
King
The Princess Independence @F
Diaries Day =

escapist
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Dealing with Missing Entries

o Want to minimize SSE for unseen test data

o Ildea: Minimize SSE on training data

e Want large f (# of factors) to capture all the signals
e But, SSE on test data begins to rise forf > 2

o Regularization is needed!

e Allow rich model where there are sufficient data
e Shrink aggressively where data are scarce

A...

trarnrng

SInf Y al

w w
Wwhsops
(&)]

w N
=

error”
regularization parameter

v
“length”
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The Effect of Regularization

T

Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Sensibility Dcean’s 11
< Factor 1 ]

The Princess
Diaries

min 2. (r —aipy)’ +’{Z” .| +Z”qi”2}

P,Q training

MiN¢cors - €I1or” + A “length”

The Lion King

Factor 2

P

y

Independence
Day

Dumb and
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The Effect of Regularization

T

Geared Geared
< » towards

towards Yo Factor 1

females NN males

> A S
N
~\
~
~

min 2 (r-ap;)’ +’{Z” .| +Z”qi”2}

P,Q training

MiN; .o - €rror’ + A “length”

Factor 2

P
<«
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The Effect of Regularization

T Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards ~ = > towards
females \\ Factor 1 males
> N
N
S
. . . > A S
The Princess The Lion King Dumb and
Diaries
Dumber

min T(,-ap)+4 lef +Ylal |

P,Q training

MiN¢cors - €I1or” + A “length”

Independend
Day

Factor 2

P

y
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The Effect of Regularization

T

Geared Geared
towards * » towards
“\ Factor 1
females N males
~

min 2 (r-ap;)’ +’{Z” .| +Z”qi”2}

P,Q training

MiN; .o - €rror’ + A “length”

Factor 2

P
<«

RECSYS 67



Use Gradient Descent to search for
the optimal settings NS

o Want to find matrices P and Q:

min 2, (n =6 p)"+2 2Ipd + 2l

training
o Gradlent descent:

e Initialize P and Q (using SVD, pretend missing ratings are

0
) _ How to compute gradient
e Do gradient descent: of a matrix?
« P&«P-n-VP Compute gradient of every
element independently!
* Qe<Q-7-VQ

 Where VQ is gradient/derivative of matrix Q:
= [Vaqir] and Vqir = X, ; —2(ryi — qipx)Dxr + 2245
* Here g,y is entry f of row g; of matrix Q
e Observation: Computing gradients is slow!
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Degression to the lecture notes of
Regression and Gradient Descent
by Andrew NQ’s
Machine Learning course from Coursera
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(Batch) Gradient Descent B

o Want to find matrices P and Q:

min 2, (n =6 p)"+2 2Ipd + 2l

training
o Gradlent descent:

e Initialize P and Q (using SVD, pretend missing ratings are

0
) _ How to compute gradient
e Do gradient descent: of a matrix?
« P&«P-n-VP Compute gradient of every
element independently!
* Qe<Q-7-VQ

 Where VQ is gradient/derivative of matrix Q:
= [Vaqir] and Vqir = X, ; —2(ryi — qipx)Dxr + 2245
* Here g,y is entry f of row g; of matrix Q
e Observation: Computing gradients is slow!
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Stochastic Gradient Descent

o Gradient Descent (GD) vs. Stochastic GD
e Observation: VQ = [Vq;r] where
Vair = z —2(Tei = QifPxf)Pxs + 2Aqis = z VQ (1)

x,l

* Here q;f is entry f of row g; of matrix Q

° Q=Q-1 Q=0Q—n[X%;VQ (rx)]
e |dea: Instead of evaluating gradient over all ratings evaluate it for
each individual rating and make a step

o GD: Q<Q —n[X;,,VQ(ry)]
0 SGD: Q<Q — 1 Q(ry)

e Faster convergence!
* Need more steps but each step is computed much faster
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SGD vs. GD

o Convergence of GD vs. SGD

N

Value of the objective function
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Iteration/step

3000

3500

GD improves the value
of the objective function
at every step.

SGD improves the value
but in a “noisy” way.

GD takes fewer steps to
converge but each step
takes much longer to
compute.

In practice, SGD is
much faster! RECSYS 73



Stochastic Gradient Descent @M

o Stochastic gradient decent:
e Initialize P and Q (using SVD, pretend missing ratings are

0)
e Then iterate over the ratings (multiple times if necessary) and update
factors:
For each r;:
o &4 =Ty — q; - DL (derivative of the “error”)
© qi < qi+ 1 (xipx —1q0) (update equation)

© Py < Dx + 1 (&xi qi — A Dy) (update equation)

o 2 for loops:

: ... learning rate
e For until convergence:

* For eachr,
- Compute gradient, do a “step”
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Factor vector 2
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Summary: Recommendations via Optimization

13
3

o Goal: Make good recommendations

wWwhso s~
(62
(62

e Quantify goodness using SSE: 2 [T
So, Lower SSE means better recommendations 21| 2

3 ?

e We want to make good recommendations on items t L
that some user has not yet seen.

e Let's set values for P and Q such that they work
well on known (user, item) ratings

e And hope these values for P and Q will predict well
the unknown ratings

o This Is the a case where we apply Optimization
methods

RECSYS 76



Backup Slides



The Netflix Challenge:
2006-09
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We Know What You Ought
To Be Watching This
Summer
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Home Rules Leaderboard Reqister Update Submit Download
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Welcomel

The Mefflix Prize seeks to substantially
improve the accuracy of predictions about
how much someaone is going to love a
movie based on their movie preferences.
Improve it enough and you win one (or
maore) Prizes. Winning the Mefflix Prize

r subversive fana improves our ability to connect people to

fram the mavies they love.

Read the Rules to see what is required to
win the Prizes. Ifyou are interested in
joining the quest, you should register 3
team.

You should also read the frequently-
asked guestions aboutthe Prize. And
check out how various teams are doing
on the Leaderboard.

Danied Knau

f:g;:-;lsr' 3 Good luck and thanks for helping!

documer

Member Favoriies
Easter Eggs

By Decada

By Studio

Movies You've Seen

o0 Give a friend



Netflix Prize

 Training data
— 100 million ratings
— 480,000 users
— 17,770 movies
— 6 years of data: 2000-2005
« Testdata
— Last few ratings of each user (2.8 million)
— Evaluation criterion: root mean squared error (RMSE)
— Netflix Cinematch RMSE: 0.9514
o Competition
— 2700+ teams
— $1 million grand prize for 10% improvement on Cinematch result
— $50,000 2007 progress prize for 8.43% improvement
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Overall rating distribution

3, 28%

4, 33%

e Third of ratings are 4s
 Average rating is 3.68




#ratings per movie
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#ratings per user
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Average movie rating by movie count
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 More ratings to better movies

From TimelyDevelopment.com



Most loved movies

Title Avg rating | Count

The Shawshank Redemption 4,593 137812
Lord of the Rings: The Return of the King 4,545 133597
The Green Mile 4.306 180883
Lord of the Rings: The Two Towers 4.460 150676
Finding Nemo 4,415 139050
Raiders of the Lost Ark 4.504 117456
Forrest Gump 4.299 180736
Lord of the Rings: The Fellowship of the ring |4.433 147932
The Sixth Sense 4.325 149199
Indiana Jones and the Last Crusade 4.333 144027



Challenges

Size of data

— Scalability

— Keeping data in memory

Missing data

— 99 percent missing

— Very imbalanced

Avoiding overfitting

Test and training data differ significantly

From the makers of THE PRIVATE EYES

THT PRIIH HEGHTER

A Knockout Comedy!

movie #16322



The BellKor recommender system

 Use an ensemble of complementing predictors

» Two, half tfuned models worth more than a single, fully
tuned model




Extending Latent Factor
Model to Include Biases

SSSSSSSSS



Modeling Biases and Interactions

user bias movie bias

Baseline predictor
Separates users and movies

Benefits from insights into user’s
behavior

Among the main practical
contributions of the competition

M = overall mean rating
= bias of user x

bX
b, = bias of moviei

user-movie interaction

User-Movie interaction
Characterizes the matching between
users and movies
Attracts most research in the field
Benefits from algorithmic and
mathematical innovations
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Baseline Predictor

o We have expectations on the rating by
user x of movie i, even without estimating x’s attitude

towards movies like |

— Rating scale of user — (Recent) popularity of movie

— Values of other ratings user — Selection bias; related to
gave recently (day-specific number of ratings user gave on
mood, anchoring, multi-user the same day (“frequency”)
accounts)
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Putting It All Together
— T
Tki—'ﬂ-+'bx'+'bi4'(h'px

Overall Bias for Bias for User-Movie
mean rating user x movie i interaction

e Meanrating: u=3.7

e You are a critical reviewer: your ratings are 1 star
lower than the mean: b, = -1

e Star Wars gets a mean rating of 0.5 higher than
average movie: b, =+ 0.5

e Predicted rating for you on Star Wars:
=3.7-1+ 05 =32
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Fitting the New Model

o Solve:

mln Z(rxi —(u+b, +b +q; pl))z

QP (xi)eR goodness of fit

o 2lal + Xl + 2L+ 2l

_ regularlzatlon
IS selected via grid-

search on a validation set

o Stochastic gradient decent to find parameters

e Note: Both biases b, b; as well as interactions q;, p, are treated
as parameters (we estimate them)
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BellKor Recommender System

o The winner of the Netflix Challenge

o Multi-scale modeling of the data:
Combine top level, “regional”
modeling of the data, with Global effects
a refined, local view:

e Global:

* Qverall deviations of users/movies
e Factorization:

Factorization

* Addressing “regional” effects -
e Collaborative filtering:

« Extract local patterns

" Collaborative
e filtering
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Performance of Various Methods

=¢=CF (no time bias)

==Basic Latent Factors

*,
\ =#=|_atent Factors w/ Biases

10 100
Millions of parameters
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Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix;: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: .90

Latent factors+Biases: 0.89

Grand Prize: 0.8563




Temporal Biases Of Users

(early 2004)

Improvements in Netflix
GUI improvements
Meaning of rating changed

Users prefer new movies
without any reasons

Older movies are just
iInherently better than
newer ones

Y. Koren, Collaborative filtering with
temporal dynamics, KDD '09

baseling 500m8

baseline 0008

a8
a7rs |k
ar
365
a6
ass
-
3_5 o _.\_ g ...'w
L .1

PR TE T . prn X
34 . . . 0.2

0 500 1000 1500 2000

tima {days)
375 0.2
3T F 0.15
365 0.1
36 |-« O SO oy . -« .05
" -

ass oo R A P e T o
35 3 ; 0.05

[
A45 [ -1
3.4 : : L . -0.15

o 500 1000 1500 2000 2500

mavie age (days)

RKELDYDS 1UY

inleraclon scone

interaction scone



Temporal Biases & Factors

o Original model:
Myi = ﬂ+bx+ bi * 'pr

o Add time dependence to biases:
i = M +bx(t)+ bi(t) +qi ' pr
e Make parameters b, and b; to depend on time

e (1) Parameterize time-dependence by linear trends
(2) Each bin corresponds to 10 consecutive weeks

o Add temporal dependence to factors

e p,(t)... user preference vector on day t

bi(t) = bi + b; Bin(e)

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
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Adding Temporal Effects

=¢=CF (no time bias)
—==Basic Latent Factors
®-CF (time bias)

=#=| atent Factors w/ Biases

\\\ =>=+ | inear time factors
\ =¥+ Per-day user biases

-e-+ CF

100 1000
Millions of parameters
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Performance of Various Methods

Basic Collaborative filtering: 0.94

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix; 0.9514

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize! ®
Getting desperate.
Try a “kitchen

sink” approach!

Grand Prize: 0.8563




All developed CF models
SBRAMF
BRISMF  SyD-Tim= Split REM 3&“33@

Mavie KNN V. B%ﬁg}gﬁ DRBMSVD+ ysvD2  GTE

KNNHImey oD Integrated M. RBM

SVD-AUF Movie KNN ~ CTD/IMTD  sSvDNN
User kNN Classif. ModelKNN 1...5 Asym. 1/2/3

TV ey

Latent User and
= Movie Features

Probe

Blending - BlF;rr?c?iﬁg
PYIYYIYIYYY  vyyiYy

approx. 500 predictors

200 blends 30 blends

Linear Blend  10.09 % improvement

Michael Jahrer / Andreas Toscher — Team BigChaos — September 21, 2009
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Standing on June 26™" 2009

NETFLIX

Netflix Prize

Home Rules Leaderboard Register Update Submit  Download

Leaderboard

Display top 20 leaders.

Rank Team Name Best Score % Improvement Last Submit Time
1 Bellkars Pragmatic Chags 0.8558 10.05 2009-06-26 18:42:37

Grand Prize - RMSE <= 0.8563

PragmaticThaory

Bellkor in BiaChaos

Grand Prize Team
Dace

BigChaos

BruceDengDaoCiYTYou

rengpengznou
Lvecior

xiangliang

2009-06-25 22:15:51
2009-05-13 08:14:09
2009-06-12 08:20:24
2009-04-22 055703
2009-06-23 23:06:52

=

2009-06-24 07:16:02

2009-04-22 18:31:32
2009-06-26 23:18:13
2009-08-27 00:55:55
2009-06-27 01:06:43
2009-06-26 12:49:04
2009-08-26 07:47:34




The Last 30 Days

o Ensemble team formed

e Group of other teams on leaderboard forms a new team
e Relies on combining their models
e Quickly also get a qualifying score over 10%

o BellKor

e Continue to get small improvements in their scores
e Realize that they are in direct competition with

o Strategy

e Both teams carefully monitoring the leaderboard

e Only sure way to check for improvement is to submit a set of
predictions

* This alerts the other team of your latest score
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24 Hours from the Deadline

o Submissions limited to 1 a day
e Only 1 final submission could be made in the last 24h

o 24 hours before deadline...

e BellKor team member in Austria notices (by chance) that
Ensemble posts a score that is slightly better than BellKor’s

o Frantic last 24 hours for both teams

e Much computer time on final optimization
e Carefully calibrated to end about an hour before deadline

o Final submissions

e BellKor submits a little early (on purpose), 40 mins before deadline
e Ensemble submits their final entry 20 mins later
e ....and everyone waits....
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NETELIX

Netflix Prize

m
Update

CONPLETED

Home Rules Leaderboard Download

Showing Test Score, Click here to show quiz score

Leaderboard

Displaytop | 20 % leaders.

Team Name Best Test Score % Improvement Best Submit Time

;
2
3
4
a
G
7
&

e N 1+ ]
[ T

BellkKor's Pragmatic Chaos

The Ensemble
Grand Prize Team

Dpera Solutions and Vandelay United

0.6567
0.6567

L Qe P W

0.6568

Vandelay Industries |
PragmaticTheory
Bellkor in BigChaos
Dace

Feeds2

BigChaos

Dpera Solutions
BellkKor

xiangliang

Gravity

Ces

Invisible Ideas

Justa guy in a garage

J Dennis Su

Craig Carmichael
acmehill

0.6581
0.65594
0.8601
0.6612
0.6622
0.6623
0.6623
0.6624

10.06
10.06

9.64
9.81
8.7
8.70
8.59
§.48
g.47
g.47
§.46

2009-07-26 16:16:28
2009-07-26 168:36:22

2009-07-100112:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 068:14:08
2009-07-24 17:16:43
20090712 13:11:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 171911

2009-07-15 14:53:22
2009-04-22 18:31:32
2009-06-21 19:24:53
2009-07-15 15:53:04
2009-05-24 10:02:54
2009-03-07 171617
2009-07-25 16:00:54
2009-03-21 16:20:50




Million $ Awarded Sept 215t 2009

Belllors Eu:]mriﬁ-: Chacs
OME ML
eon The Merblie Frive
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Further reading

e Y. Koren, Collaborative filtering with temporal
dynamics, KDD '09

e http://www2.research.att.com/~volinsky/netflix/bpc.html
e http://www.the-ensemble.com/

RECSYS 120



	Slide Number 1
	Acknowledgements
	Content-based Systems & Collaborative Filtering
	High Dimensional Data
	Example: Recommender Systems
	Recommendations 
	From Scarcity to Abundance
	The Long Tail
	Physical vs. Online
	Types of Recommendations
	Formal Model
	Utility Matrix
	Key Problems
	(1) Gathering Ratings
	(2) Extrapolating Utilities
	Content-based �Recommender Systems
	Content-based Recommendations
	Plan of Action
	Item Profiles
	Sidenote: TF-IDF
	User Profiles and Prediction
	Pros: Content-based Approach
	Cons: Content-based Approach
	�Collaborative Filtering
	Collaborative filtering
	Collaborative Filtering (CF)
	Example of Memory-based Collaborative Filtering:  �User-User Collaborative Filtering
	Similar Users
	Similarity Metric
	Rating Predictions
	Another type of Memory-based Collaborative Filtering: : Item-Item based Collaborative Filtering
	Item-Item CF (|N|=2)
	Item-Item CF (|N|=2)
	Item-Item CF (|N|=2)
	Item-Item CF (|N|=2)
	Item-Item CF (|N|=2)
	Common Practice for �Item-Item Collaborative Filtering
	Item-Item vs. User-User
	Pros/Cons of Collaborative Filtering
	Hybrid Methods
	Remarks & Practical Tips
	Evaluation
	Evaluation
	Evaluating Predictions
	Problems with Error Measures
	Collaborative Filtering: Complexity
	Tip: Add Data
	Recommender Systems:�Latent Factor Models�
	Collaborative Filtering via�Latent Factor Models (e.g., SVD)
	Slide Number 50
	The Netflix Utility Matrix R
	Utility Matrix R: Evaluation
	Latent Factor Models
	Ratings as Products of Factors
	Ratings as Products of Factors
	Ratings as Products of Factors
	Latent Factor Models
	Latent Factor Models
	Recap: SVD
	Latent Factor Models
	Dealing with Missing Entries
	Recommendations via Latent Factor Models �(e.g., SVD++ by the [Bellkor Team])
	Dealing with Missing Entries
	The Effect of Regularization
	The Effect of Regularization
	The Effect of Regularization
	The Effect of Regularization
	Use Gradient Descent to search for�the optimal settings 
	Degression to the lecture notes of�Regression and Gradient Descent�by Andrew Ng’s �Machine Learning course from Coursera
	(Batch) Gradient Descent
	Stochastic Gradient Descent
	SGD vs. GD
	Stochastic Gradient Descent
	Slide Number 75
	Summary: Recommendations via Optimization
	�Backup Slides
	�The Netflix Challenge: 2006-09
	Slide Number 79
	Slide Number 80
	Netflix Prize
	Movie rating data
	Overall rating distribution
	#ratings per movie 
	#ratings per user 
	Average movie rating by movie count
	Most loved movies
	Challenges
	The BellKor recommender system
	Extending Latent Factor Model to Include Biases
	Modeling Biases and Interactions
	Baseline Predictor
	Putting It All Together
	Fitting the New Model
	BellKor Recommender System
	Performance of Various Methods
	Performance of Various Methods
	Temporal Biases Of Users
	Temporal Biases & Factors
	Adding Temporal Effects
	Performance of Various Methods
	Slide Number 113
	Slide Number 114
	Standing on June 26th 2009
	The Last 30 Days
	24 Hours from the Deadline
	Slide Number 118
	Million $ Awarded Sept 21st 2009
	Further reading



