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1 Basic Elements of Iterative Algorithms

In this lecture we consider the unconstrained minimization of a function f that satisfy the following
requirements:
• (i) f admits a minimizer x∗ on Rn such that ||x∗|| ≤ R.
• (ii) f is convex on Rn.
• (iii) f is L-Lipschitz on the l2-ball of radius R, that is for any x ∈ Rn such that ||x|| ≤ R and

any ||∇f(x)|| ≤ L.

1.1 Gradient Descent

The simplest strategy to minimize a differentiable function is probably the Gradient Descent scheme.
It is an iterative algorithm that starts at some initial point x1 ∈ Rn, and then iterates the following
equation:

xt+1 = xt − η∇f(xt),

where η > 0 is the step-size fixed beforehand. The idea of this scheme is simply to do small
steps that minimize the local first order Taylor approximation of the function f . When the function
is convex but not differentiable it seems rather natural to replace gradients by subgradients. This
gives the gradient Descent strategy.

Here we need to be a bit careful if we want to analyze this scheme under assumptions (i)-(ii)-
(iii). Indeed we have a control on the size of the gradients only in a ball of radius R. Furthermore
we also know that the minimizer of the function lies in this ball. Thus it makes sense to enforce
that if we leave the ball, then we first project back the point to the ball before taking another
gradient step. This gives the (Projected) gradient Descent:

yt+1 = xt − ηgt, where gt = ∇f(xt)

if ‖yt+1‖ ≤ R then xt+1 = yt+1, otherwise xt+1 =
R

‖yt+1‖
yt+1.

The following elementary result gives a rate of convergence for the gradient method.

Theorem 1. Assume that f satisfies (i)-(ii)-(iii), and that x1 = 0. Then the (Projected) gradient
Descent with η = R

L
√
t

satisfies for x̄t ∈
{
1
t

∑t
s=1 xs; argmin1≤s≤tf(xs)

}
,

f(x̄t)− f∗ ≤
RL√
t
.
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Proof. Using the definition of gradients, the definition of the method, and an elementary identity,
one obtains

f(xs)− f(x∗) ≤ g>s (xs − x∗)

=
1

η
(xs − ys+1)

>(xs − x∗)

=
1

2η

(
‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2

)
=

1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+
η

2
‖gs‖2.

Now note that ‖gs‖ ≤ L, and ‖ys+1−x∗‖ ≥ ‖xs+1−x∗‖ (just do a picture to convince yourself).
Summing the resulting inequality over s, and using that ‖x1 − x∗‖ ≤ R yield

t∑
s=1

(f(xs)− f(x∗)) ≤ R2

2η
+
ηL2t

2
.

Plugging in the value of η directly gives the statement (recall that by convexity f(x̄t) ≤
1
t

∑t
s=1 f(xs)).
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